Click here to close Hello! We notice that you are using Internet Explorer, which is not supported by Xenbase and may cause the site to display incorrectly. We suggest using a current version of Chrome, FireFox, or Safari.

Summary Expression Gene Literature (37) GO Terms (7) Nucleotides (112) Proteins (30) Interactants (644) Wiki
XB--6085858

Papers associated with mafb

Search for mafb morpholinos using Textpresso

Limit to papers also referencing gene:
5 paper(s) referencing morpholinos

Results 1 - 37 of 37 results

Page(s): 1

Sort Newest To Oldest Sort Oldest To Newest

Transcriptome profiling reveals male- and female-specific gene expression pattern and novel gene candidates for the control of sex determination and gonad development in Xenopus laevis., Piprek RP, Damulewicz M, Tassan JP, Kloc M, Kubiak JZ., Dev Genes Evol. January 1, 2019; 229 (2-3): 53-72.        


Genome-wide transcriptomics analysis identifies sox7 and sox18 as specifically regulated by gata4 in cardiomyogenesis., Afouda BA, Lynch AT, de Paiva Alves E, Hoppler S., Dev Biol. January 1, 2018; 434 (1): 108-120.                


RXR Ligands Modulate Thyroid Hormone Signaling Competence in Young Xenopus laevis Tadpoles., Mengeling BJ, Goodson ML, Furlow JD., Endocrinology. January 1, 2018; 159 (7): 2576-2595.


Generation of animal form by the Chordin/Tolloid/BMP gradient: 100 years after D''Arcy Thompson., De Robertis EM, Moriyama Y, Colozza G., Dev Growth Differ. September 1, 2017; 59 (7): 580-592.            


no privacy, a Xenopus tropicalis mutant, is a model of human Hermansky-Pudlak Syndrome and allows visualization of internal organogenesis during tadpole development., Nakayama T, Nakajima K, Cox A, Fisher M, Fisher M, Howell M, Fish MB, Yaoita Y, Grainger RM., Dev Biol. January 1, 2017; 426 (2): 472-486.                      


Znf703, a novel target of Pax3 and Zic1, regulates hindbrain and neural crest development in Xenopus., Hong CS, Saint-Jeannet JP., Genesis. January 1, 2017; 55 (12):                               


Xenopus as a model system for studying pancreatic development and diabetes., Kofent J, Spagnoli FM., Semin Cell Dev Biol. March 1, 2016; 51 106-16.  


Prdm12 specifies V1 interneurons through cross-repressive interactions with Dbx1 and Nkx6 genes in Xenopus., Thélie A, Desiderio S, Hanotel J, Quigley I, Van Driessche B, Rodari A, Borromeo MD, Kricha S, Lahaye F, Croce J, Cerda-Moya G, Ordoño Fernandez J, Bolle B, Lewis KE, Sander M, Pierani A, Schubert M, Johnson JE, Kintner CR, Pieler T, Van Lint C, Henningfeld KA, Bellefroid EJ, Van Campenhout C., Development. October 1, 2015; 142 (19): 3416-28.                                    


A novel function for Egr4 in posterior hindbrain development., Bae CJ, Jeong J, Saint-Jeannet JP., Sci Rep. September 21, 2015; 5 7750.                  


Sp8 regulates inner ear development., Chung HA, Medina-Ruiz S, Harland RM., Proc Natl Acad Sci U S A. April 29, 2014; 111 (17): 6329-34.                                                    


Spalt-like 4 promotes posterior neural fates via repression of pou5f3 family members in Xenopus., Young JJ, Kjolby RA, Kong NR, Monica SD, Harland RM., Development. April 1, 2014; 141 (8): 1683-93.                                                                


The Prdm13 histone methyltransferase encoding gene is a Ptf1a-Rbpj downstream target that suppresses glutamatergic and promotes GABAergic neuronal fate in the dorsal neural tube., Hanotel J, Bessodes N, Thélie A, Hedderich M, Parain K, Van Driessche B, Brandão Kde O, Kricha S, Jorgensen MC, Grapin-Botton A, Serup P, Van Lint C, Perron M, Pieler T, Henningfeld KA, Bellefroid EJ., Dev Biol. February 15, 2014; 386 (2): 340-57.                                                                    


Pax3 and Zic1 trigger the early neural crest gene regulatory network by the direct activation of multiple key neural crest specifiers., Plouhinec JL, Roche DD, Pegoraro C, Figueiredo AL, Maczkowiak F, Brunet LJ, Milet C, Vert JP, Pollet N, Harland RM, Monsoro-Burq AH., Dev Biol. February 15, 2014; 386 (2): 461-72.                                            


Defining progressive stages in the commitment process leading to embryonic lens formation., Jin H, Fisher M, Grainger RM., Genesis. October 1, 2012; 50 (10): 728-40.              


Transcription factors involved in lens development from the preplacodal ectoderm., Ogino H, Ochi H, Reza HM, Yasuda K., Dev Biol. March 15, 2012; 363 (2): 333-47.      


Microarray identification of novel downstream targets of FoxD4L1/D5, a critical component of the neural ectodermal transcriptional network., Yan B, Neilson KM, Moody SA., Dev Dyn. December 1, 2010; 239 (12): 3467-80.                  


Notch signaling, wt1 and foxc2 are key regulators of the podocyte gene regulatory network in Xenopus., White JT, Zhang B, Cerqueira DM, Tran U, Wessely O., Development. June 1, 2010; 137 (11): 1863-73.                            


Neither MafA/L-Maf nor MafB is essential for lens development in mice., Takeuchi T, Kudo T, Ogata K, Hamada M, Nakamura M, Kito K, Abe Y, Ueda N, Yamamoto M, Engel JD, Takahashi S., Genes Cells. August 1, 2009; 14 (8): 941-7.


Xenopus cDNA microarray identification of genes with endodermal organ expression., Park EC, Hayata T, Cho KW, Han JK., Dev Dyn. June 1, 2007; 236 (6): 1633-49.                    


Evolution of axis specification mechanisms in jawed vertebrates: insights from a chondrichthyan., Coolen M, Sauka-Spengler T, Nicolle D, Le-Mentec C, Lallemand Y, Da Silva C, Plouhinec JL, Robert B, Wincker P, Shi DL, Mazan S., PLoS One. January 1, 2007; 2 (4): e374.              


Phylogenomic analysis and expression patterns of large Maf genes in Xenopus tropicalis provide new insights into the functional evolution of the gene family in osteichthyans., Coolen M, Sii-Felice K, Bronchain O, Mazabraud A, Bourrat F, Rétaux S, Felder-Schmittbuhl MP, Mazan S, Plouhinec JL., Dev Genes Evol. July 1, 2005; 215 (7): 327-39.


Functional role of a novel ternary complex comprising SRF and CREB in expression of Krox-20 in early embryos of Xenopus laevis., Watanabe T, Hongo I, Kidokoro Y, Okamoto H., Dev Biol. January 15, 2005; 277 (2): 508-21.                


The 5''-AT-rich half-site of Maf recognition element: a functional target for bZIP transcription factor Maf., Yoshida T, Ohkumo T, Ishibashi S, Yasuda K., Nucleic Acids Res. January 1, 2005; 33 (11): 3465-78.                  


Conserved transcriptional activators of the Xenopus rhodopsin gene., Whitaker SL, Knox BE., J Biol Chem. November 19, 2004; 279 (47): 49010-8.                


Xenopus XsalF: anterior neuroectodermal specification by attenuating cellular responsiveness to Wnt signaling., Onai T, Sasai N, Matsui M, Sasai Y., Dev Cell. July 1, 2004; 7 (1): 95-106.            


FGF2 triggers iris-derived lens regeneration in newt eye., Hayashi T, Mizuno N, Ueda Y, Okamoto M, Kondoh H., Mech Dev. June 1, 2004; 121 (6): 519-26.


c-jun regulation and function in the developing hindbrain., Mechta-Grigoriou F, Giudicelli F, Pujades C, Charnay P, Yaniv M., Dev Biol. June 15, 2003; 258 (2): 419-31.


Characterizing gene expression during lens formation in Xenopus laevis: evaluating the model for embryonic lens induction., Henry JJ, Carinato ME, Schaefer JJ, Wolfe AD, Walter BE, Perry KJ, Elbl TN., Dev Dyn. June 1, 2002; 224 (2): 168-85.        


spiel ohne grenzen/pou2 is required for zebrafish hindbrain segmentation., Hauptmann G, Belting HG, Wolke U, Lunde K, Söll I, Abdelilah-Seyfried S, Prince V, Driever W., Development. April 1, 2002; 129 (7): 1645-55.


Krox20 and kreisler co-operate in the transcriptional control of segmental expression of Hoxb3 in the developing hindbrain., Manzanares M, Nardelli J, Gilardi-Hebenstreit P, Marshall H, Giudicelli F, Martínez-Pastor MT, Krumlauf R, Charnay P., EMBO J. February 1, 2002; 21 (3): 365-76.


Independent regulation of initiation and maintenance phases of Hoxa3 expression in the vertebrate hindbrain involve auto- and cross-regulatory mechanisms., Manzanares M, Bel-Vialar S, Ariza-McNaughton L, Ferretti E, Marshall H, Maconochie MM, Blasi F, Krumlauf R., Development. September 1, 2001; 128 (18): 3595-607.


Distinct roles of maf genes during Xenopus lens development., Ishibashi S, Yasuda K., Mech Dev. March 1, 2001; 101 (1-2): 155-66.        


Isolation, characterization, and expression analysis of zebrafish large Mafs., Kajihara M, Kawauchi S, Kobayashi M, Ogino H, Takahashi S, Yasuda K., J Biochem. January 1, 2001; 129 (1): 139-46.


Regulation of Hoxb3 expression in the hindbrain and pharyngeal arches by rae28, a member of the mammalian Polycomb group of genes., Tomotsune D, Shirai M, Takihara Y, Shimada K., Mech Dev. November 1, 2000; 98 (1-2): 165-9.


Regulation of lens fiber cell differentiation by transcription factor c-Maf., Kawauchi S, Takahashi S, Nakajima O, Ogino H, Morita M, Nishizawa M, Yasuda K, Yamamoto M., J Biol Chem. July 2, 1999; 274 (27): 19254-60.


Conserved and distinct roles of kreisler in regulation of the paralogous Hoxa3 and Hoxb3 genes., Manzanares M, Cordes S, Ariza-McNaughton L, Sadl V, Maruthainar K, Barsh G, Krumlauf R., Development. February 1, 1999; 126 (4): 759-69.


Segmental regulation of Hoxb-3 by kreisler., Manzanares M, Cordes S, Kwan CT, Sham MH, Barsh GS, Krumlauf R., Nature. May 8, 1997; 387 (6629): 191-5.

Page(s): 1

Xenbase: The Xenopus laevis and X. tropicalis resource.
Version: 4.12.0


Major funding for Xenbase is provided by grant P41 HD064556