Click here to close Hello! We notice that you are using Internet Explorer, which is not supported by Xenbase and may cause the site to display incorrectly. We suggest using a current version of Chrome, FireFox, or Safari.

Summary Expression Gene Literature (26) GO Terms (3) Nucleotides (46) Proteins (27) Interactants (374) Wiki
XB--6485520

Papers associated with bix1.3

Search for bix1.3 morpholinos using Textpresso

Limit to papers also referencing gene:
6 paper(s) referencing morpholinos

Results 1 - 26 of 26 results

Page(s): 1

Sort Newest To Oldest Sort Oldest To Newest

Tbx2 is required for the suppression of mesendoderm during early Xenopus development., Teegala S, Chauhan R, Lei E, Weinstein DC., Dev Dyn. January 1, 2018; 247 (7): 903-913.                


Both Nuclear Size and DNA Amount Contribute to Midblastula Transition Timing in Xenopus laevis., Jevtić P, Levy DL., Sci Rep. January 1, 2017; 7 (1): 7908.            


Ascl1 represses the mesendoderm induction in Xenopus., Min Z, Lin H, Zhu X, Gao L, Khand AA, Tao Q., Acta Biochim Biophys Sin (Shanghai). November 1, 2016; 48 (11): 1006-1015.


A novel role for Ascl1 in the regulation of mesendoderm formation via HDAC-dependent antagonism of VegT., Gao L, Zhu X, Chen G, Ma X, Zhang Y, Zhang Y, Khand AA, Shi H, Gu F, Lin H, Chen Y, Zhang H, He L, Tao Q, Tao Q., Development. February 1, 2016; 143 (3): 492-503.                            


Genome evolution in the allotetraploid frog Xenopus laevis., Session AM, Uno Y, Kwon T, Chapman JA, Toyoda A, Takahashi S, Fukui A, Hikosaka A, Suzuki A, Suzuki A, Kondo M, van Heeringen SJ, Quigley I, Heinz S, Ogino H, Ochi H, Hellsten U, Lyons JB, Simakov O, Putnam N, Stites J, Kuroki Y, Tanaka T, Michiue T, Watanabe M, Bogdanovic O, Lister R, Georgiou G, Paranjpe SS, van Kruijsbergen I, Shu S, Carlson J, Kinoshita T, Ohta Y, Mawaribuchi S, Jenkins J, Grimwood J, Schmutz J, Mitros T, Mozaffari SV, Suzuki Y, Haramoto Y, Yamamoto TS, Takagi C, Heald R, Miller K, Haudenschild C, Kitzman J, Nakayama T, Izutsu Y, Robert J, Robert J, Fortriede J, Burns K, Lotay V, Karimi K, Yasuoka Y, Dichmann DS, Flajnik MF, Houston DW, Shendure J, DuPasquier L, Vize PD, Zorn AM, Ito M, Marcotte EM, Wallingford JB, Ito Y, Asashima M, Ueno N, Matsuda Y, Veenstra GJ, Fujiyama A, Harland RM, Taira M, Rokhsar DS., Nature. January 1, 2016; 538 (7625): 336-343.                              


Sebox regulates mesoderm formation in early amphibian embryos., Chen G, Tan R, Tao Q, Tao Q., Dev Dyn. November 1, 2015; 244 (11): 1415-26.              


Nuclear size scaling during Xenopus early development contributes to midblastula transition timing., Jevtić P, Levy DL., Curr Biol. January 5, 2015; 25 (1): 45-52.                


Inference of the Xenopus tropicalis embryonic regulatory network and spatial gene expression patterns., Zheng Z, Christley S, Chiu WT, Blitz IL, Xie X, Cho KW, Nie Q., BMC Syst Biol. January 8, 2014; 8 3.                  


Microarray-based identification of Pitx3 targets during Xenopus embryogenesis., Hooker L, Smoczer C, KhosrowShahian F, Wolanski M, Crawford MJ., Dev Dyn. September 1, 2012; 241 (9): 1487-505.                          


Xenopus Nanos1 is required to prevent endoderm gene expression and apoptosis in primordial germ cells., Lai F, Singh A, King ML., Development. April 1, 2012; 139 (8): 1476-86.                


An essential role for transcription before the MBT in Xenopus laevis., Skirkanich J, Luxardi G, Yang J, Kodjabachian L, Klein PS., Dev Biol. September 15, 2011; 357 (2): 478-91.        


Repression of zygotic gene expression in the Xenopus germline., Venkatarama T, Lai F, Luo X, Zhou Y, Newman K, King ML., Development. February 1, 2010; 137 (4): 651-60.      


The role of FGF signaling in the establishment and maintenance of mesodermal gene expression in Xenopus., Fletcher RB, Harland RM., Dev Dyn. May 1, 2008; 237 (5): 1243-54.            


The role of FoxC1 in early Xenopus development., Cha JY, Birsoy B, Kofron M, Mahoney E, Lang S, Wylie C, Heasman J., Dev Dyn. October 1, 2007; 236 (10): 2731-41.        


Global analysis of the transcriptional network controlling Xenopus endoderm formation., Sinner D, Kirilenko P, Rankin S, Rankin S, Wei E, Howard L, Kofron M, Heasman J, Woodland HR, Zorn AM., Development. May 1, 2006; 133 (10): 1955-66.              


Inhibition of neurogenesis by SRp38, a neuroD-regulated RNA-binding protein., Liu KJ, Liu KJ, Harland RM., Development. April 1, 2005; 132 (7): 1511-23.                


Microarray-based identification of VegT targets in Xenopus., Taverner NV, Kofron M, Kofron M, Shin Y, Kabitschke C, Gilchrist MJ, Wylie C, Cho KW, Heasman J, Smith JC., Mech Dev. March 1, 2005; 122 (3): 333-54.                                          


Regulation of apoptosis in theXenopus embryo by Bix3., Trindade M, Messenger N, Papin C, Grimmer D, Fairclough L, Tada M, Smith JC., Development. October 1, 2003; 130 (19): 4611-22.                  


Molecular regulation of vertebrate early endoderm development., Shivdasani RA., Dev Biol. September 15, 2002; 249 (2): 191-203.      


Effects of heterodimerization and proteolytic processing on Derrière and Nodal activity: implications for mesoderm induction in Xenopus., Eimon PM, Harland RM., Development. July 1, 2002; 129 (13): 3089-103.          


Xenopus Brachyury regulates mesodermal expression of Zic3, a gene controlling left-right asymmetry., Kitaguchi T, Mizugishi K, Hatayama M, Aruga J, Mikoshiba K., Dev Growth Differ. February 1, 2002; 44 (1): 55-61.        


Making mesoderm--upstream and downstream of Xbra., Smith JC., Int J Dev Biol. January 1, 2001; 45 (1): 219-24.    


Maternal VegT is the initiator of a molecular network specifying endoderm in Xenopus laevis., Xanthos JB, Kofron M, Wylie C, Heasman J., Development. January 1, 2001; 128 (2): 167-80.


A screen for targets of the Xenopus T-box gene Xbra., Saka Y, Tada M, Smith JC., Mech Dev. May 1, 2000; 93 (1-2): 27-39.                  


Bix4 is activated directly by VegT and mediates endoderm formation in Xenopus development., Casey ES, Tada M, Fairclough L, Wylie CC, Heasman J, Smith JC., Development. October 1, 1999; 126 (19): 4193-200.              


Bix1, a direct target of Xenopus T-box genes, causes formation of ventral mesoderm and endoderm., Tada M, Casey ES, Fairclough L, Smith JC., Development. October 1, 1998; 125 (20): 3997-4006.

Page(s): 1

Xenbase: The Xenopus Model Organism Knowledgebase.
Version: 4.15.0
Major funding for Xenbase is provided by grant P41 HD064556