Click here to close Hello! We notice that you are using Internet Explorer, which is not supported by Xenbase and may cause the site to display incorrectly. We suggest using a current version of Chrome, FireFox, or Safari.

Summary Expression Phenotypes Gene Literature (69) GO Terms (4) Nucleotides (30) Proteins (9) Interactants (77) Wiki
XB--6492177

Papers associated with pgla



???displayGene.coCitedPapers???

???pagination.result.count???

???pagination.result.page??? 1 2 ???pagination.result.next???

Sort Newest To Oldest Sort Oldest To Newest

Beneficial actions of the [A14K] analog of the frog skin peptide PGLa-AM1 in mice with obesity and degenerative diabetes: A mechanistic study., Musale V, Moffett RC, Conlon JM, Flatt PR, Abdel-Wahab YH., Peptides. February 1, 2021; 136 170472.


Highly synergistic antimicrobial activity of magainin 2 and PGLa peptides is rooted in the formation of supramolecular complexes with lipids., Aisenbrey C, Amaro M, Pospíšil P, Hof M, Bechinger B., Sci Rep. July 15, 2020; 10 (1): 11652.


Synergy on Surfaces: Anti-Biofouling Interfaces Using Surface-Attached Antimicrobial Peptides PGLa and Magainin-2., Shtreimer Kandiyote N, Mohanraj G, Mao C, Kasher R, Arnusch CJ., Langmuir. September 18, 2018; 34 (37): 11147-11155.


Frog Skin Innate Immune Defences: Sensing and Surviving Pathogens., Varga JFA, Bui-Marinos MP, Katzenback BA., Front Immunol. September 12, 2018; 9 3128.  


Peptidomic analysis of skin secretions of the Mexican burrowing toad Rhinophrynus dorsalis (Rhinophrynidae): Insight into the origin of host-defense peptides within the Pipidae and characterization of a proline-arginine-rich peptide., Conlon JM, Guilhaudis L, Leprince J, Coquet L, Mangoni ML, Attoub S, Jouenne T, King JD., Peptides. November 1, 2017; 97 22-28.


Charged Antimicrobial Peptides Can Translocate across Membranes without Forming Channel-like Pores., Ulmschneider JP., Biophys J. July 11, 2017; 113 (1): 73-81.


Actions of PGLa-AM1 and its [A14K] and [A20K] analogues and their therapeutic potential as anti-diabetic agents., Owolabi BO, Musale V, Ojo OO, Moffett RC, McGahon MK, Curtis TM, Conlon JM, Flatt PR, Abdel-Wahab YHA., Biochimie. July 1, 2017; 138 1-12.


2H-NMR and MD Simulations Reveal Membrane-Bound Conformation of Magainin 2 and Its Synergy with PGLa., Strandberg E, Horn D, Reißer S, Zerweck J, Wadhwani P, Ulrich AS., Biophys J. November 15, 2016; 111 (10): 2149-2161.


Investigations of the synergistic enhancement of antimicrobial activity in mixtures of magainin 2 and PGLa., Glattard E, Salnikov ES, Aisenbrey C, Bechinger B., Biophys Chem. March 1, 2016; 210 35-44.


Host-defense and trefoil factor family peptides in skin secretions of the Mawa clawed frog Xenopus boumbaensis (Pipidae)., Conlon JM, Mechkarska M, Kolodziejek J, Leprince J, Coquet L, Jouenne T, Vaudry H, Nowotny N, King JD., Peptides. October 1, 2015; 72 44-9.


Influence of hydrophobic residues on the activity of the antimicrobial peptide magainin 2 and its synergy with PGLa., Strandberg E, Zerweck J, Horn D, Pritz G, Berditsch M, Bürck J, Wadhwani P, Ulrich AS., J Pept Sci. May 1, 2015; 21 (5): 436-45.


Evidence from peptidomic analysis of skin secretions that allopatric populations of Xenopus gilli (Anura:Pipidae) constitute distinct lineages., Conlon JM, Mechkarska M, Coquet L, Leprince J, Jouenne T, Vaudry H, Measey GJ., Peptides. January 1, 2015; 63 118-25.


Host-defense peptides from skin secretions of Fraser's clawed frog Xenopus fraseri (Pipidae): Further insight into the evolutionary history of the Xenopodinae., Conlon JM, Mechkarska M, Kolodziejek J, Nowotny N, Coquet L, Leprince J, Jouenne T, Vaudry H., Comp Biochem Physiol Part D Genomics Proteomics. December 1, 2014; 12 45-52.


Antimicrobial and immunomodulatory properties of PGLa-AM1, CPF-AM1, and magainin-AM1: Potent activity against oral pathogens., McLean DT, McCrudden MT, Linden GJ, Irwin CR, Conlon JM, Lundy FT., Regul Pept. November 1, 2014; .


Host-defense peptides from skin secretions of the octoploid frogs Xenopus vestitus and Xenopus wittei (Pipidae): insights into evolutionary relationships., Mechkarska M, Coquet L, Leprince J, Jouenne T, Vaudry H, Michalak K, Michalak P, Conlon JM., Comp Biochem Physiol Part D Genomics Proteomics. September 1, 2014; 11 20-8.


[Optimization of coding sequences and expression of antimicrobial peptide magainin II in Escherichia coli and Pichia pastoris]., Chen Y, Chen Q, Chen K, Zhang T, Chen J., Sheng Wu Gong Cheng Xue Bao. April 1, 2014; 30 (4): 615-24.


Low structural variation in the host-defense peptide repertoire of the dwarf clawed frog Hymenochirus boettgeri (Pipidae)., Matthijs S, Ye L, Stijlemans B, Cornelis P, Bossuyt F, Roelants K., PLoS One. January 17, 2014; 9 (1): e86339.              


Host-defense peptides with therapeutic potential from skin secretions of frogs from the family pipidae., Conlon JM, Mechkarska M., Pharmaceuticals (Basel). January 15, 2014; 7 (1): 58-77.          


Peptidomic analysis of skin secretions provides insight into the taxonomic status of the African clawed frogs Xenopus victorianus and Xenopus laevis sudanensis (Pipidae)., King JD, Mechkarska M, Meetani MA, Conlon JM., Comp Biochem Physiol Part D Genomics Proteomics. September 1, 2013; 8 (3): 250-4.


A comparison of host-defense peptides in skin secretions of female Xenopus laevis × Xenopus borealis and X. borealis × X. laevis F1 hybrids., Mechkarska M, Prajeep M, Leprince J, Vaudry H, Meetani MA, Evans BJ, Conlon JM., Peptides. July 1, 2013; 45 1-8.


Synergistic insertion of antimicrobial magainin-family peptides in membranes depends on the lipid spontaneous curvature., Strandberg E, Zerweck J, Wadhwani P, Ulrich AS., Biophys J. March 19, 2013; 104 (6): L9-11.


Caerulein precursor fragment (CPF) peptides from the skin secretions of Xenopus laevis and Silurana epitropicalis are potent insulin-releasing agents., Srinivasan D, Mechkarska M, Abdel-Wahab YH, Flatt PR, Conlon JM., Biochimie. February 1, 2013; 95 (2): 429-35.


Frog skin peptides (tigerinin-1R, magainin-AM1, -AM2, CPF-AM1, and PGla-AM1) stimulate secretion of glucagon-like peptide 1 (GLP-1) by GLUTag cells., Ojo OO, Conlon JM, Flatt PR, Abdel-Wahab YH., Biochem Biophys Res Commun. February 1, 2013; 431 (1): 14-8.    


Hybridization between the African clawed frogs Xenopus laevis and Xenopus muelleri (Pipidae) increases the multiplicity of antimicrobial peptides in skin secretions of female offspring., Mechkarska M, Meetani M, Michalak P, Vaksman Z, Takada K, Conlon JM., Comp Biochem Physiol Part D Genomics Proteomics. September 1, 2012; 7 (3): 285-91.


Host-defense peptides in skin secretions of the tetraploid frog Silurana epitropicalis with potent activity against methicillin-resistant Staphylococcus aureus (MRSA)., Conlon JM, Mechkarska M, Prajeep M, Sonnevend A, Coquet L, Leprince J, Jouenne T, Vaudry H, King JD., Peptides. September 1, 2012; 37 (1): 113-9.


Reorientation and dimerization of the membrane-bound antimicrobial peptide PGLa from microsecond all-atom MD simulations., Ulmschneider JP, Smith JC, Ulmschneider MB, Ulrich AS, Strandberg E., Biophys J. August 8, 2012; 103 (3): 472-482.


Host-defense peptides in skin secretions of African clawed frogs (Xenopodinae, Pipidae)., Conlon JM, Mechkarska M, King JD., Gen Comp Endocrinol. May 1, 2012; 176 (3): 513-8.    


Host-defense peptides from skin secretions of the tetraploid frogs Xenopus petersii and Xenopus pygmaeus, and the octoploid frog Xenopus lenduensis (Pipidae)., King JD, Mechkarska M, Coquet L, Leprince J, Jouenne T, Vaudry H, Takada K, Conlon JM., Peptides. January 1, 2012; 33 (1): 35-43.


Isolation and characterisation of a new antimicrobial peptide from the skin of Xenopus laevis., Hou F, Li J, Pan P, Xu J, Liu L, Liu W, Song B, Li N, Wan J, Gao H., Int J Antimicrob Agents. December 1, 2011; 38 (6): 510-5.


Genome duplications within the Xenopodinae do not increase the multiplicity of antimicrobial peptides in Silurana paratropicalis and Xenopus andrei skin secretions., Mechkarska M, Eman A, Coquet L, Jérôme L, Jouenne T, Vaudry H, King JD, Takada K, Conlon JM., Comp Biochem Physiol Part D Genomics Proteomics. June 1, 2011; 6 (2): 206-12.


Antimicrobial peptides with therapeutic potential from skin secretions of the Marsabit clawed frog Xenopus borealis (Pipidae)., Mechkarska M, Ahmed E, Coquet L, Leprince J, Jouenne T, Vaudry H, King JD, Conlon JM., Comp Biochem Physiol C Toxicol Pharmacol. November 1, 2010; 152 (4): 467-72.


19F NMR analysis of the antimicrobial peptide PGLa bound to native cell membranes from bacterial protoplasts and human erythrocytes., Ieronimo M, Afonin S, Koch K, Berditsch M, Wadhwani P, Ulrich AS., J Am Chem Soc. July 7, 2010; 132 (26): 8822-4.


Orthologs of magainin, PGLa, procaerulein-derived, and proxenopsin-derived peptides from skin secretions of the octoploid frog Xenopus amieti (Pipidae)., Conlon JM, Al-Ghaferi N, Ahmed E, Meetani MA, Leprince J, Nielsen PF., Peptides. June 1, 2010; 31 (6): 989-94.


Synergistic transmembrane insertion of the heterodimeric PGLa/magainin 2 complex studied by solid-state NMR., Strandberg E, Tremouilhac P, Wadhwani P, Ulrich AS., Biochim Biophys Acta. August 1, 2009; 1788 (8): 1667-79.


Biological activity and structural aspects of PGLa interaction with membrane mimetic systems., Lohner K, Prossnigg F., Biochim Biophys Acta. August 1, 2009; 1788 (8): 1656-66.


Molecular features of thyroid hormone-regulated skin remodeling in Xenopus laevis during metamorphosis., Suzuki K, Machiyama F, Nishino S, Watanabe Y, Kashiwagi K, Kashiwagi A, Yoshizato K., Dev Growth Differ. May 1, 2009; 51 (4): 411-27.                


Solid-state NMR analysis comparing the designer-made antibiotic MSI-103 with its parent peptide PGLa in lipid bilayers., Strandberg E, Kanithasen N, Tiltak D, Bürck J, Wadhwani P, Zwernemann O, Ulrich AS., Biochemistry. February 26, 2008; 47 (8): 2601-16.


Interaction of a magainin-PGLa hybrid peptide with membranes: insight into the mechanism of synergism., Nishida M, Imura Y, Yamamoto M, Kobayashi S, Yano Y, Matsuzaki K., Biochemistry. December 11, 2007; 46 (49): 14284-90.


Synergistic transmembrane alignment of the antimicrobial heterodimer PGLa/magainin., Tremouilhac P, Strandberg E, Wadhwani P, Ulrich AS., J Biol Chem. October 27, 2006; 281 (43): 32089-94.


Analyses of dose-response curves to compare the antimicrobial activity of model cationic alpha-helical peptides highlights the necessity for a minimum of two activity parameters., Rautenbach M, Gerstner GD, Vlok NM, Kulenkampff J, Westerhoff HV., Anal Biochem. March 1, 2006; 350 (1): 81-90.


Atomic force microscopy study of the effect of antimicrobial peptides on the cell envelope of Escherichia coli., Meincken M, Holroyd DL, Rautenbach M., Antimicrob Agents Chemother. October 1, 2005; 49 (10): 4085-92.


Candida glabrata is unusual with respect to its resistance to cationic antifungal proteins., Helmerhorst EJ, Venuleo C, Beri A, Oppenheim FG., Yeast. July 15, 2005; 22 (9): 705-14.


Lipid discrimination in phospholipid monolayers by the antimicrobial frog skin peptide PGLa. A synchrotron X-ray grazing incidence and reflectivity study., Konovalov O, Myagkov I, Struth B, Lohner K., Eur Biophys J. October 1, 2002; 31 (6): 428-37.


Heterodimer formation between the antimicrobial peptides magainin 2 and PGLa in lipid bilayers: a cross-linking study., Hara T, Mitani Y, Tanaka K, Uematsu N, Takakura A, Tachi T, Kodama H, Kondo M, Mori H, Otaka A, Nobutaka F, Matsuzaki K., Biochemistry. October 16, 2001; 40 (41): 12395-9.


Synergistic effects of low doses of histatin 5 and its analogues on amphotericin B anti-mycotic activity., van't Hof W, Reijnders IM, Helmerhorst EJ, Walgreen-Weterings E, Simoons-Smit IM, Veerman EC, Amerongen AV., Antonie Van Leeuwenhoek. August 1, 2000; 78 (2): 163-9.


Membrane binding and pore formation of the antibacterial peptide PGLa: thermodynamic and mechanistic aspects., Wieprecht T, Apostolov O, Beyermann M, Seelig J., Biochemistry. January 18, 2000; 39 (2): 442-52.


A critical comparison of the hemolytic and fungicidal activities of cationic antimicrobial peptides., Helmerhorst EJ, Reijnders IM, van 't Hof W, Veerman EC, Nieuw Amerongen AV., FEBS Lett. April 23, 1999; 449 (2-3): 105-10.


Mechanism of synergism between antimicrobial peptides magainin 2 and PGLa., Matsuzaki K, Mitani Y, Akada KY, Murase O, Yoneyama S, Zasloff M, Miyajima K., Biochemistry. October 27, 1998; 37 (43): 15144-53.


Structural aspects of the interaction of peptidyl-glycylleucine-carboxyamide, a highly potent antimicrobial peptide from frog skin, with lipids., Latal A, Degovics G, Epand RF, Epand RM, Lohner K., Eur J Biochem. September 15, 1997; 248 (3): 938-46.


Functional synergism of the magainins PGLa and magainin-2 in Escherichia coli, tumor cells and liposomes., Westerhoff HV, Zasloff M, Rosner JL, Hendler RW, De Waal A, Vaz Gomes A, Jongsma PM, Riethorst A, Juretić D., Eur J Biochem. March 1, 1995; 228 (2): 257-64.

???pagination.result.page??? 1 2 ???pagination.result.next???