Click here to close Hello! We notice that you are using Internet Explorer, which is not supported by Xenbase and may cause the site to display incorrectly. We suggest using a current version of Chrome, FireFox, or Safari.

Summary Expression Phenotypes Gene Literature (75) GO Terms (0) Nucleotides (41) Proteins (24) Interactants (145) Wiki
XB--855698

Papers associated with slc5a1.1



???displayGene.coCitedPapers???
1 ???displayGene.morpholinoPapers???

???pagination.result.count???

???pagination.result.page??? 1 2 ???pagination.result.next???

Sort Newest To Oldest Sort Oldest To Newest

Xenopus Ssbp2 is required for embryonic pronephros morphogenesis and terminal differentiation., Cervino AS, Collodel MG, Lopez IA, Roa C, Hochbaum D, Hukriede NA, Cirio MC., Sci Rep. October 4, 2023; 13 (1): 16671.                                          


HNF1B Alters an Evolutionarily Conserved Nephrogenic Program of Target Genes., Grand K, Stoltz M, Rizzo L, Röck R, Kaminski MM, Salinas G, Getwan M, Naert T, Pichler R, Lienkamp SS., J Am Soc Nephrol. March 1, 2023; 34 (3): 412-432.                          


The enpp4 ectonucleotidase regulates kidney patterning signalling networks in Xenopus embryos., Massé K, Bhamra S, Paroissin C, Maneta-Peyret L, Boué-Grabot E, Jones EA., Commun Biol. October 7, 2021; 4 (1): 1158.                                


MAP17 Is a Necessary Activator of Renal Na+/Glucose Cotransporter SGLT2., Coady MJ, El Tarazi A, Santer R, Bissonnette P, Sasseville LJ, Calado J, Lussier Y, Dumayne C, Bichet DG, Lapointe JY., J Am Soc Nephrol. January 1, 2017; 28 (1): 85-93.


Alternative channels for urea in the inner medulla of the rat kidney., Nawata CM, Dantzler WH, Pannabecker TL., Am J Physiol Renal Physiol. December 1, 2015; 309 (11): F916-24.


The ribosome biogenesis factor Nol11 is required for optimal rDNA transcription and craniofacial development in Xenopus., Griffin JN, Sondalle SB, Del Viso F, Baserga SJ, Khokha MK., PLoS Genet. March 10, 2015; 11 (3): e1005018.                              


The Wnt/JNK signaling target gene alcam is required for embryonic kidney development., Cizelsky W, Tata A, Kühl M, Kühl SJ., Development. May 1, 2014; 141 (10): 2064-74.          


Functional characterization of mouse sodium/glucose transporter type 3b., Aljure O, Díez-Sampedro A., Am J Physiol Cell Physiol. July 1, 2010; 299 (1): C58-65.


Regulation of Na+-coupled glucose carrier SGLT1 by AMP-activated protein kinase., Sopjani M, Bhavsar SK, Fraser S, Kemp BE, Föller M, Lang F., Mol Membr Biol. April 1, 2010; 27 (2-3): 137-44.


The actual ionic nature of the leak current through the Na+/glucose cotransporter SGLT1., Longpré JP, Gagnon DG, Coady MJ, Lapointe JY., Biophys J. January 20, 2010; 98 (2): 231-9.


Relative CO2/NH3 selectivities of AQP1, AQP4, AQP5, AmtB, and RhAG., Musa-Aziz R, Chen LM, Pelletier MF, Boron WF., Proc Natl Acad Sci U S A. March 31, 2009; 106 (13): 5406-11.


Stabilization of enzyme-susceptible glucoside bonds of phloridzin through conjugation with poly(gamma-glutamic acid)., Sakuma S, Sagawa T, Masaoka Y, Kataoka M, Yamashita S, Shirasaka Y, Tamai I, Ikumi Y, Kida T, Akashi M., J Control Release. January 19, 2009; 133 (2): 125-31.


Reanalysis of structure/function correlations in the region of transmembrane segments 4 and 5 of the rabbit sodium/glucose cotransporter., Liu T, Speight P, Silverman M., Biochem Biophys Res Commun. January 2, 2009; 378 (1): 133-8.


Effects on conformational states of the rabbit sodium/glucose cotransporter through modulation of polarity and charge at glutamine 457., Liu T, Krofchick D, Silverman M., Biophys J. January 1, 2009; 96 (2): 748-60.


Transmembrane IV of the high-affinity sodium-glucose cotransporter participates in sugar binding., Liu T, Lo B, Speight P, Silverman M., Am J Physiol Cell Physiol. July 1, 2008; 295 (1): C64-72.


Improved intestinal membrane permeability of hexose-quinoline derivatives via the hexose transporter, SGLT1., Otake K, Suzuki H, Higashi R, Yabuuchi H, Haga M, Maeda T, Cook TJ, Tamai I., J Pharm Sci. May 1, 2008; 97 (5): 1821-30.


How drugs interact with transporters: SGLT1 as a model., Loo DD, Hirayama BA, Sala-Rabanal M, Wright EM., J Membr Biol. May 1, 2008; 223 (2): 87-106.


Sodium-dependent reorganization of the sugar-binding site of SGLT1., Hirayama BA, Loo DD, Díez-Sampedro A, Leung DW, Meinild AK, Lai-Bing M, Turk E, Wright EM., Biochemistry. November 20, 2007; 46 (46): 13391-406.


Tripeptides of RS1 (RSC1A1) inhibit a monosaccharide-dependent exocytotic pathway of Na+-D-glucose cotransporter SGLT1 with high affinity., Vernaleken A, Veyhl M, Gorboulev V, Kottra G, Palm D, Burckhardt BC, Burckhardt G, Pipkorn R, Beier N, van Amsterdam C, Koepsell H., J Biol Chem. September 28, 2007; 282 (39): 28501-13.


The mechanism of water transport in Na+-coupled glucose transporters expressed in Xenopus oocytes., Zeuthen T, Zeuthen E., Biophys J. August 15, 2007; 93 (4): 1413-6; discussion 1417-9.


Na+ -D-glucose cotransporter in the kidney of Leucoraja erinacea: molecular identification and intrarenal distribution., Althoff T, Hentschel H, Luig J, Schütz H, Kasch M, Kinne RK., Am J Physiol Regul Integr Comp Physiol. June 1, 2007; 292 (6): R2391-9.


Voltage-clamp fluorometry in the local environment of the C255-C511 disulfide bridge of the Na+/glucose cotransporter., Gagnon DG, Frindel C, Lapointe JY., Biophys J. April 1, 2007; 92 (7): 2403-11.


Effect of substrate on the pre-steady-state kinetics of the Na(+)/glucose cotransporter., Gagnon DG, Frindel C, Lapointe JY., Biophys J. January 15, 2007; 92 (2): 461-72.


RS1 (RSC1A1) regulates the exocytotic pathway of Na+-D-glucose cotransporter SGLT1., Veyhl GJ., Am J Physiol Renal Physiol. December 1, 2006; 291 (6): F1213-23.


Substrate specificity of a chimera made from Xenopus SGLT1-like protein and rabbit SGLT1., Nagata K, Hata Y., Biochim Biophys Acta. June 1, 2006; 1758 (6): 747-54.


Water transport by Na+-coupled cotransporters of glucose (SGLT1) and of iodide (NIS). The dependence of substrate size studied at high resolution., Zeuthen T, Belhage B, Zeuthen E., J Physiol. February 1, 2006; 570 (Pt 3): 485-99.


Transport of d-galactose by the gastrointestinal tract of the locust, Locusta migratoria., Pascual I, Berjón A, Lostao MP, Barber A., Comp Biochem Physiol B Biochem Mol Biol. January 1, 2006; 143 (1): 20-6.


Characterization of taurine as inhibitor of sodium glucose transporter., Kim HW, Lee AJ, You S, Park T, Lee DH., Adv Exp Med Biol. January 1, 2006; 583 137-45.


Membrane topology of loop 13-14 of the Na+/glucose cotransporter (SGLT1): a SCAM and fluorescent labelling study., Gagnon DG, Holt A, Bourgeois F, Wallendorff B, Coady MJ, Lapointe JY., Biochim Biophys Acta. June 30, 2005; 1712 (2): 173-84.


Determination of transport stoichiometry for two cation-coupled myo-inositol cotransporters: SMIT2 and HMIT., Bourgeois F, Coady MJ, Lapointe JY., J Physiol. March 1, 2005; 563 (Pt 2): 333-43.


Coupled sodium/glucose cotransport by SGLT1 requires a negative charge at position 454., Díez-Sampedro A, Loo DD, Wright EM, Zampighi GA, Hirayama BA., Biochemistry. October 19, 2004; 43 (41): 13175-84.


Transition states of the high-affinity rabbit Na(+)/glucose cotransporter SGLT1 as determined from measurement and analysis of voltage-dependent charge movements., Krofchick D, Huntley SA, Silverman M., Am J Physiol Cell Physiol. July 1, 2004; 287 (1): C46-54.


Regulation of glucose transporter SGLT1 by ubiquitin ligase Nedd4-2 and kinases SGK1, SGK3, and PKB., Dieter M, Palmada M, Rajamanickam J, Aydin A, Busjahn A, Boehmer C, Luft FC, Lang F., Obes Res. May 1, 2004; 12 (5): 862-70.


Glucose accumulation can account for the initial water flux triggered by Na+/glucose cotransport., Gagnon MP, Bissonnette P, Deslandes LM, Wallendorff B, Lapointe JY., Biophys J. January 1, 2004; 86 (1 Pt 1): 125-33.


Downregulation of the Na(+)- D-glucose cotransporter SGLT1 by protein RS1 (RSC1A1) is dependent on dynamin and protein kinase C., Veyhl M, Wagner CA, Gorboulev V, Schmitt BM, Lang F, Koepsell H., J Membr Biol. November 1, 2003; 196 (1): 71-81.


Rat kidney MAP17 induces cotransport of Na-mannose and Na-glucose in Xenopus laevis oocytes., Blasco T, Aramayona JJ, Alcalde AI, Catalán J, Sarasa M, Sorribas V., Am J Physiol Renal Physiol. October 1, 2003; 285 (4): F799-810.


Mobility of ions, sugar, and water in the cytoplasm of Xenopus oocytes expressing Na(+)-coupled sugar transporters (SGLT1)., Zeuthen T, Zeuthen E, Klaerke DA., J Physiol. July 1, 2002; 542 (Pt 1): 71-87.


Flavonoid inhibition of sodium-dependent vitamin C transporter 1 (SVCT1) and glucose transporter isoform 2 (GLUT2), intestinal transporters for vitamin C and Glucose., Song J, Kwon O, Chen S, Daruwala R, Eck P, Park JB, Levine M., J Biol Chem. May 3, 2002; 277 (18): 15252-60.


Molecular basis for glucose-galactose malabsorption., Wright EM, Turk E, Martin MG., Cell Biochem Biophys. January 1, 2002; 36 (2-3): 115-21.


Residue 457 controls sugar binding and transport in the Na(+)/glucose cotransporter., Díez-Sampedro A, Wright EM, Hirayama BA., J Biol Chem. December 28, 2001; 276 (52): 49188-94.


The plasma membrane-associated protein RS1 decreases transcription of the transporter SGLT1 in confluent LLC-PK1 cells., Korn T, Kühlkamp T, Track C, Schatz I, Baumgarten K, Gorboulev V, Koepsell H., J Biol Chem. November 30, 2001; 276 (48): 45330-40.


Mapping the urea channel through the rabbit Na(+)-glucose cotransporter SGLT1., Panayotova-Heiermann M, Wright EM., J Physiol. September 1, 2001; 535 (Pt 2): 419-25.


A missense mutation in the Na(+)/glucose cotransporter gene SGLT1 in a patient with congenital glucose-galactose malabsorption: normal trafficking but inactivation of the mutant protein., Kasahara M, Maeda M, Hayashi S, Mori Y, Abe T., Biochim Biophys Acta. May 31, 2001; 1536 (2-3): 141-7.


Isotonic transport by the Na+-glucose cotransporter SGLT1 from humans and rabbit., Zeuthen T, Meinild AK, Loo DD, Wright EM, Klaerke DA., J Physiol. March 15, 2001; 531 (Pt 3): 631-44.


Role of Cl- in electrogenic Na+-coupled cotransporters GAT1 and SGLT1., Loo DD, Eskandari S, Boorer KJ, Sarkar HK, Wright EM., J Biol Chem. December 1, 2000; 275 (48): 37414-22.


Expression of the Na+/glucose co-transporter (SGLT1) in the intestine of domestic and wild ruminants., Wood IS, Dyer J, Hofmann RR, Shirazi-Beechey SP., Pflugers Arch. November 1, 2000; 441 (1): 155-62.


Glycoside binding and translocation in Na(+)-dependent glucose cotransporters: comparison of SGLT1 and SGLT3., Díez-Sampedro A, Lostao MP, Wright EM, Hirayama BA., J Membr Biol. July 15, 2000; 176 (2): 111-7.


Voltage and substrate dependence of the inverse transport mode of the rabbit Na(+)/glucose cotransporter (SGLT1)., Sauer GA, Nagel G, Koepsell H, Bamberg E, Hartung K., FEBS Lett. March 3, 2000; 469 (1): 98-100.


Purification and functional reconstitution of a truncated human Na(+)/glucose cotransporter (SGLT1) expressed in E. coli., Panayotova-Heiermann M, Leung DW, Hirayama BA, Wright EM., FEBS Lett. October 15, 1999; 459 (3): 386-90.


Cloning and functional expression of an SGLT-1-like protein from the Xenopus laevis intestine., Nagata K, Hori N, Sato K, Ohta K, Tanaka H, Hiji Y., Am J Physiol. May 1, 1999; 276 (5): G1251-9.

???pagination.result.page??? 1 2 ???pagination.result.next???