Click here to close Hello! We notice that you are using Internet Explorer, which is not supported by Xenbase and may cause the site to display incorrectly. We suggest using a current version of Chrome, FireFox, or Safari.

Summary Expression Gene Literature (13) GO Terms (17) Nucleotides (82) Proteins (24) Interactants (363) Wiki
XB--876528

Papers associated with hes5.10

Search for hes5.10 morpholinos using Textpresso

Limit to papers also referencing gene:
4 paper(s) referencing morpholinos

Results 1 - 13 of 13 results

Page(s): 1

Sort Newest To Oldest Sort Oldest To Newest

Conservatism and variability of gene expression profiles among homeologous transcription factors in Xenopus laevis., Watanabe M, Yasuoka Y, Mawaribuchi S, Kuretani A, Ito M, Kondo M, Ochi H, Ogino H, Fukui A, Taira M, Kinoshita T., Dev Biol. June 15, 2017; 426 (2): 301-324.                          


Polarized Wnt signaling regulates ectodermal cell fate in Xenopus., Huang YL, Niehrs C., Dev Cell. April 28, 2014; 29 (2): 250-7.                  


Transient expression of Ngn3 in Xenopus endoderm promotes early and ectopic development of pancreatic beta and delta cells., Oropeza D, Horb M., Genesis. March 1, 2012; 50 (3): 271-85.                        


The functions of maternal Dishevelled 2 and 3 in the early Xenopus embryo., Tadjuidje E, Cha SW, Louza M, Wylie C, Heasman J., Dev Dyn. July 1, 2011; 240 (7): 1727-36.          


Xmc mediates Xctr1-independent morphogenesis in Xenopus laevis., Haremaki T, Weinstein DC., Dev Dyn. September 1, 2009; 238 (9): 2382-7.            


Maternal Interferon Regulatory Factor 6 is required for the differentiation of primary superficial epithelia in Danio and Xenopus embryos., Sabel JL, d'Alençon C, O'Brien EK, Van Otterloo E, Lutz K, Cuykendall TN, Schutte BC, Houston DW, Cornell RA., Dev Biol. January 1, 2009; 325 (1): 249-62.                            


Hairy2 functions through both DNA-binding and non DNA-binding mechanisms at the neural plate border in Xenopus., Nichane M, Ren X, Souopgui J, Bellefroid EJ., Dev Biol. October 15, 2008; 322 (2): 368-80.                        


PAR1 specifies ciliated cells in vertebrate ectoderm downstream of aPKC., Ossipova O, Tabler J, Green JB, Sokol SY., Development. December 1, 2007; 134 (23): 4297-306.          


Identification of novel genes affecting mesoderm formation and morphogenesis through an enhanced large scale functional screen in Xenopus., Chen JA, Voigt J, Gilchrist M, Papalopulu N, Amaya E., Mech Dev. March 1, 2005; 122 (3): 307-31.                                                                                                                      


Oriented cell divisions asymmetrically segregate aPKC and generate cell fate diversity in the early Xenopus embryo., Chalmers AD, Strauss B, Papalopulu N., Development. June 1, 2003; 130 (12): 2657-68.    


Intrinsic differences between the superficial and deep layers of the Xenopus ectoderm control primary neuronal differentiation., Chalmers AD, Welchman D, Papalopulu N., Dev Cell. February 1, 2002; 2 (2): 171-82.    


Vertebrate hairy and Enhancer of split related proteins: transcriptional repressors regulating cellular differentiation and embryonic patterning., Davis RL, Turner DL., Oncogene. December 20, 2001; 20 (58): 8342-57.


A two-step mechanism generates the spacing pattern of the ciliated cells in the skin of Xenopus embryos., Deblandre GA, Wettstein DA, Koyano-Nakagawa N, Kintner C., Development. November 1, 1999; 126 (21): 4715-28.                  

Page(s): 1

Xenbase: The Xenopus laevis and X. tropicalis resource.
Version: 4.12.0


Major funding for Xenbase is provided by grant P41 HD064556