Click here to close Hello! We notice that you are using Internet Explorer, which is not supported by Xenbase and may cause the site to display incorrectly. We suggest using a current version of Chrome, FireFox, or Safari.

Summary Expression Phenotypes Gene Literature (45) GO Terms (7) Nucleotides (220) Proteins (89) Interactants (156) Wiki
XB--920764

Papers associated with itpr1



???displayGene.coCitedPapers???

???pagination.result.count???

???pagination.result.page??? 1

Sort Newest To Oldest Sort Oldest To Newest

Inositol 1, 4, 5-trisphosphate receptor is required for spindle assembly in Xenopus oocytes., Li R, Ren Y, Mo G, Swider Z, Mikoshiba K, Bement WM, Liu XJ., Mol Biol Cell. December 1, 2022; 33 (14): br27.          


Quantifying the dose-dependent impact of intracellular amyloid beta in a mathematical model of calcium regulation in xenopus oocyte., Minicucci J, Alfond M, Demuro A, Gerberry D, Latulippe J., PLoS One. January 28, 2021; 16 (1): e0246116.                          


Changes in Ca2+ Removal Can Mask the Effects of Geometry During IP3R Mediated Ca2+ Signals., Piegari E, Villarruel C, Ponce Dawson S., Front Physiol. January 1, 2019; 10 964.                      


Data-driven modeling of mitochondrial dysfunction in Alzheimer's disease., Toglia P, Demuro A, Mak DD, Ullah G., Cell Calcium. December 1, 2018; 76 23-35.


Calcium Signaling in Vertebrate Development and Its Role in Disease., Paudel S, Sindelar R, Saha M., Int J Mol Sci. October 30, 2018; 19 (11):     


PLC and IP3-evoked Ca2+ release initiate the fast block to polyspermy in Xenopus laevis eggs., Wozniak KL, Tembo M, Phelps WA, Lee MT, Carlson AE., J Gen Physiol. September 3, 2018; 150 (9): 1239-1248.            


Splicing variation of Long-IRBIT determines the target selectivity of IRBIT family proteins., Kawaai K, Ando H, Satoh N, Yamada H, Ogawa N, Hirose M, Mizutani A, Bonneau B, Seki G, Mikoshiba K., Proc Natl Acad Sci U S A. April 11, 2017; 114 (15): 3921-3926.                          


The BH4 domain of Bcl-2 orthologues from different classes of vertebrates can act as an evolutionary conserved inhibitor of IP3 receptor channels., Ivanova H, Luyten T, Decrock E, Vervliet T, Leybaert L, Parys JB, Bultynck G., Cell Calcium. March 1, 2017; 62 41-46.


Comparison of gating dynamics of different IP3R channels with immune algorithm searching for channel parameter distributions., Cai X, Li X, Qi H, Wei F, Chen J, Shuai J., Phys Biol. October 17, 2016; 13 (5): 056005.


Luminal Ca(2+) dynamics during IP3R mediated signals., Lopez LF, Dawson SP., Phys Biol. May 27, 2016; 13 (3): 036006.


Analyzing and Modeling the Kinetics of Amyloid Beta Pores Associated with Alzheimer's Disease Pathology., Ullah G, Demuro A, Parker I, Pearson JE., PLoS One. September 4, 2015; 10 (9): e0137357.                    


Mas-related G protein-coupled receptor D is coupled to endogenous calcium-activated chloride channel in Xenopus oocytes., Zhuo RG, Ma XY, Zhou PL, Liu XY, Zhang K, Wei XL, Yan HT, Xu JP, Zheng JQ., J Physiol Biochem. March 1, 2014; 70 (1): 185-91.


Mid-range Ca2+ signalling mediated by functional coupling between store-operated Ca2+ entry and IP3-dependent Ca2+ release., Courjaret R, Machaca K., Nat Commun. January 1, 2014; 5 3916.


Intracellular calcium signals display an avalanche-like behavior over multiple lengthscales., Lopez L, Piegari E, Sigaut L, Ponce Dawson S., Front Physiol. July 25, 2012; 3 350.                    


Phosphorylation of the rat Ins(1,4,5)P₃ receptor at T930 within the coupling domain decreases its affinity to Ins(1,4,5)P₃., Haun S, Sun L, Hubrack S, Yule D, Machaca K., Channels (Austin). January 1, 2012; 6 (5): 379-84.      


IP3 signaling is required for cilia formation and left-right body axis determination in Xenopus embryos., Hatayama M, Mikoshiba K, Aruga J., Biochem Biophys Res Commun. July 8, 2011; 410 (3): 520-4.      


Sonic hedgehog signaling is decoded by calcium spike activity in the developing spinal cord., Belgacem YH, Borodinsky LN., Proc Natl Acad Sci U S A. March 15, 2011; 108 (11): 4482-7.        


Endoplasmic reticulum remodeling tunes IP₃-dependent Ca²+ release sensitivity., Sun L, Yu F, Ullah A, Hubrack S, Daalis A, Jung P, Machaca K., PLoS One. January 1, 2011; 6 (11): e27928.            


BDNF stimulates Ca2+ oscillation frequency in melanotrope cells of Xenopus laevis: contribution of IP3-receptor-mediated release of intracellular Ca2+ to gene expression., Kuribara M, Eijsink VD, Roubos EW, Jenks BG, Scheenen WJ., Gen Comp Endocrinol. November 1, 2010; 169 (2): 123-9.        


Constitutive recycling of the store-operated Ca2+ channel Orai1 and its internalization during meiosis., Yu F, Sun L, Machaca K., J Cell Biol. November 1, 2010; 191 (3): 523-35.                  


Stochastic fire-diffuse-fire model with realistic cluster dynamics., Calabrese A, Fraiman D, Zysman D, Ponce Dawson S., Phys Rev E Stat Nonlin Soft Matter Phys. September 1, 2010; 82 (3 Pt 1): 031910.


Superresolution localization of single functional IP3R channels utilizing Ca2+ flux as a readout., Wiltgen SM, Smith IF, Parker I., Biophys J. July 21, 2010; 99 (2): 437-46.


An investigation of models of the IP3R channel in Xenopus oocyte., Shuai JW, Yang DP, Pearson JE, Rüdiger S., Chaos. September 1, 2009; 19 (3): 037105.


Mitochondria and calcium signaling in embryonic development., Cao X, Chen Y., Semin Cell Dev Biol. May 1, 2009; 20 (3): 337-45.    


Modeling Ca2+ signaling differentiation during oocyte maturation., Ullah G, Jung P, Machaca K., Cell Calcium. December 1, 2007; 42 (6): 556-64.


A kinetic model of single and clustered IP3 receptors in the absence of Ca2+ feedback., Shuai J, Pearson JE, Foskett JK, Mak DO, Parker I., Biophys J. August 15, 2007; 93 (4): 1151-62.


The inositol 1,4,5-trisphosphate receptor (Itpr) gene family in Xenopus: identification of type 2 and type 3 inositol 1,4,5-trisphosphate receptor subtypes., Zhang D, Boulware MJ, Pendleton MR, Nogi T, Marchant JS., Biochem J. June 15, 2007; 404 (3): 383-91.


Polycystin 2 interacts with type I inositol 1,4,5-trisphosphate receptor to modulate intracellular Ca2+ signaling., Li Y, Wright JM, Qian F, Germino GG, Guggino WB., J Biol Chem. December 16, 2005; 280 (50): 41298-306.


Role of a spatial distribution of IP3 receptors in the Ca2+ dynamics of the Xenopus embryo at the mid-blastula transition stage., Díaz J, Pastor N, Martínez-Mekler G., Dev Dyn. February 1, 2005; 232 (2): 301-12.


Ca2+-dependent redox modulation of SERCA 2b by ERp57., Li Y, Camacho P., J Cell Biol. January 5, 2004; 164 (1): 35-46.                    


Buffer kinetics shape the spatiotemporal patterns of IP3-evoked Ca2+ signals., Dargan SL, Parker I., J Physiol. December 15, 2003; 553 (Pt 3): 775-88.


Identification of a family of calcium sensors as protein ligands of inositol trisphosphate receptor Ca(2+) release channels., Yang J, McBride S, Mak DO, Vardi N, Palczewski K, Haeseleer F, Foskett JK., Proc Natl Acad Sci U S A. May 28, 2002; 99 (11): 7711-6.


Galphas family G proteins activate IP(3)-Ca(2+) signaling via gbetagamma and transduce ventralizing signals in Xenopus., Kume S, Inoue T, Mikoshiba K., Dev Biol. October 1, 2000; 226 (1): 88-103.              


Impact of mitochondrial Ca2+ cycling on pattern formation and stability., Falcke M, Hudson JL, Camacho P, Lechleiter JD., Biophys J. July 1, 1999; 77 (1): 37-44.


Inositol 1,4,5-trisphosphate [correction of tris-phosphate] activation of inositol trisphosphate [correction of tris-phosphate] receptor Ca2+ channel by ligand tuning of Ca2+ inhibition., Mak DO, McBride S, Foskett JK., Proc Natl Acad Sci U S A. December 22, 1998; 95 (26): 15821-5.


Effects of divalent cations on single-channel conduction properties of Xenopus IP3 receptor., Mak DO, Foskett JK., Am J Physiol. July 1, 1998; 275 (1): C179-88.


Role of inositol 1,4,5-trisphosphate receptor in ventral signaling in Xenopus embryos., Kume S, Muto A, Inoue T, Suga K, Okano H, Mikoshiba K., Science. December 12, 1997; 278 (5345): 1940-3.


Developmental expression of the inositol 1,4,5-trisphosphate receptor and localization of inositol 1,4,5-trisphosphate during early embryogenesis in Xenopus laevis., Kume S, Muto A, Okano H, Mikoshiba K., Mech Dev. August 1, 1997; 66 (1-2): 157-68.


Single-channel kinetics, inactivation, and spatial distribution of inositol trisphosphate (IP3) receptors in Xenopus oocyte nucleus., Mak DO, Foskett JK., J Gen Physiol. May 1, 1997; 109 (5): 571-87.                          


Developmental expression of the inositol 1,4,5-trisphosphate receptor and structural changes in the endoplasmic reticulum during oogenesis and meiotic maturation of Xenopus laevis., Kume S, Yamamoto A, Inoue T, Muto A, Okano H, Mikoshiba K., Dev Biol. February 15, 1997; 182 (2): 228-39.              


Expressed ryanodine receptor can substitute for the inositol 1,4,5-trisphosphate receptor in Xenopus laevis oocytes during progesterone-induced maturation., Kobrinsky E, Ondrias K, Marks AR., Dev Biol. December 1, 1995; 172 (2): 531-40.


Single-channel inositol 1,4,5-trisphosphate receptor currents revealed by patch clamp of isolated Xenopus oocyte nuclei., Mak DO, Foskett JK., J Biol Chem. November 25, 1994; 269 (47): 29375-8.


A single-pool model for intracellular calcium oscillations and waves in the Xenopus laevis oocyte., Atri A, Amundson J, Clapham D, Sneyd J., Biophys J. October 1, 1993; 65 (4): 1727-39.


Calcium oscillations and waves: is the IP3R Ca2+ channel the culprit?, Keizer J., Biophys J. October 1, 1993; 65 (4): 1359-61.


The Xenopus IP3 receptor: structure, function, and localization in oocytes and eggs., Kume S, Muto A, Aruga J, Nakagawa T, Michikawa T, Furuichi T, Nakade S, Okano H, Mikoshiba K., Cell. May 7, 1993; 73 (3): 555-70.                  

???pagination.result.page??? 1