Click here to close Hello! We notice that you are using Internet Explorer, which is not supported by Xenbase and may cause the site to display incorrectly. We suggest using a current version of Chrome, FireFox, or Safari.

Summary Expression Gene Literature (153) GO Terms (13) Nucleotides (138) Proteins (29) Interactants (919) Wiki

Papers associated with neurod1

Search for neurod1 morpholinos using Textpresso

Limit to papers also referencing gene:
30 paper(s) referencing morpholinos

Results 1 - 20 of 153 results

Page(s): 1 2 3 4 5 6 7 8 Next

Sort Newest To Oldest Sort Oldest To Newest
C8orf46 homolog encodes a novel protein Vexin that is required for neurogenesis in Xenopus laevis.
Moore KB, Logan MA, Aldiri I, Roberts JM, Steele M, Vetter ML.
Dev Biol. January 1, 2018; 437 (1): 27-40.

Vestigial-like 3 is a novel Ets1 interacting partner and regulates trigeminal nerve formation and cranial neural crest migration.
Simon E, Thézé N, Fédou S, Thiébaud P, Faucheux C.
Biol Open. October 15, 2017; 6 (10): 1528-1540.

Dual roles of Akirin2 protein during Xenopus neural development.
Liu X, Xia Y, Tang J, Ma L, Li C, Ma P, Mao B.
J Biol Chem. January 1, 2017; 292 (14): 5676-5684.

Six1 and Eya1 both promote and arrest neuronal differentiation by activating multiple Notch pathway genes.
Riddiford N, Schlosser G.
Dev Biol. January 1, 2017; 431 (2): 152-167.

KDM3A-mediated demethylation of histone H3 lysine 9 facilitates the chromatin binding of Neurog2 during neurogenesis.
Lin H, Zhu X, Chen G, Song L, Gao L, Khand AA, Chen Y, Lin G, Tao Q, Tao Q.
Development. January 1, 2017; 144 (20): 3674-3685.

Expression of the insulinoma-associated 1 (insm1) gene in Xenopus laevis tadpole retina and brain.
Bosse JL, El-Hodiri HM.
Gene Expr Patterns. September 1, 2016; 22 (1): 26-29.

The positive transcriptional elongation factor (P-TEFb) is required for neural crest specification.
Hatch VL, Marin-Barba M, Moxon S, Ford CT, Ward NJ, Tomlinson ML, Desanlis I, Hendry AE, Hontelez S, van Kruijsbergen I, Veenstra GJ, Münsterberg AE, Wheeler GN.
Dev Biol. August 15, 2016; 416 (2): 361-72.

Xenopus as a model system for studying pancreatic development and diabetes.
Kofent J, Spagnoli FM.
Semin Cell Dev Biol. March 1, 2016; 51 106-16.

Regeneration of Xenopus laevis spinal cord requires Sox2/3 expressing cells.
Muñoz R, Edwards-Faret G, Moreno M, Zuñiga N, Cline H, Larraín J.
Dev Biol. December 15, 2015; 408 (2): 229-43.

Multi-site phosphorylation regulates NeuroD4 activity during primary neurogenesis: a conserved mechanism amongst proneural proteins.
Hardwick LJ, Philpott A.
Neural Dev. February 25, 2015; 10 15.

Sox21 regulates the progression of neuronal differentiation in a dose-dependent manner.
Whittington N, Cunningham D, Le TK, De Maria D, Silva EM.
Dev Biol. January 15, 2015; 397 (2): 237-47.

Opportunities and limits of the one gene approach: the ability of Atoh1 to differentiate and maintain hair cells depends on the molecular context.
Jahan I, Pan N, Fritzsch B.
Front Cell Neurosci. January 1, 2015; 9 26.

aPKC phosphorylates p27Xic1, providing a mechanistic link between apicobasal polarity and cell-cycle control.
Sabherwal N, Thuret R, Lea R, Stanley P, Papalopulu N.
Dev Cell. December 8, 2014; 31 (5): 559-71.

Phosphorylation in intrinsically disordered regions regulates the activity of Neurogenin2.
McDowell GS, Hindley CJ, Lippens G, Landrieu I, Philpott A.
BMC Biochem. November 6, 2014; 15 24.

Complex domain interactions regulate stability and activity of closely related proneural transcription factors.
McDowell GS, Hardwick LJ, Philpott A.
Biochem Biophys Res Commun. August 8, 2014; 450 (4): 1283-90.

Transit amplification in the amniote cerebellum evolved via a heterochronic shift in NeuroD1 expression.
Butts T, Hanzel M, Wingate RJ.
Development. July 1, 2014; 141 (14): 2791-5.

The phosphorylation status of Ascl1 is a key determinant of neuronal differentiation and maturation in vivo and in vitro.
Ali FR, Cheng K, Kirwan P, Metcalfe S, Livesey FJ, Barker RA, Philpott A.
Development. June 1, 2014; 141 (11): 2216-24.

Sp8 regulates inner ear development.
Chung HA, Medina-Ruiz S, Harland RM.
Proc Natl Acad Sci U S A. April 29, 2014; 111 (17): 6329-34.

The Prdm13 histone methyltransferase encoding gene is a Ptf1a-Rbpj downstream target that suppresses glutamatergic and promotes GABAergic neuronal fate in the dorsal neural tube.
Hanotel J, Bessodes N, Thélie A, Hedderich M, Parain K, Van Driessche B, Brandão Kde O, Kricha S, Jorgensen MC, Grapin-Botton A, Serup P, Van Lint C, Perron M, Pieler T, Henningfeld KA, Bellefroid EJ.
Dev Biol. February 15, 2014; 386 (2): 340-57.

The ETS transcription factor Etv1 mediates FGF signaling to initiate proneural gene expression during Xenopus laevis retinal development.
Willardsen M, Hutcheson DA, Moore KB, Vetter ML.
Mech Dev. February 1, 2014; 131 57-67.

Page(s): 1 2 3 4 5 6 7 8 Next

Xenbase: The Xenopus laevis and X. tropicalis resource.
Version: 4.9.2
Major funding for Xenbase is provided by the National Institute of Child Health and Human Development, grant P41 HD064556