Click here to close Hello! We notice that you are using Internet Explorer, which is not supported by Xenbase and may cause the site to display incorrectly. We suggest using a current version of Chrome, FireFox, or Safari.

Summary Expression Phenotypes Gene Literature (49) GO Terms (4) Nucleotides (433) Proteins (78) Interactants (74) Wiki
XB--966564

Papers associated with ubtf



???displayGene.coCitedPapers???

???pagination.result.count???

???pagination.result.page??? 1

Sort Newest To Oldest Sort Oldest To Newest

Molecular conflicts disrupting centromere maintenance contribute to Xenopus hybrid inviability., Kitaoka M, Smith OK, Straight AF, Heald R., Curr Biol. September 26, 2022; 32 (18): 3939-3951.e6.                          


Systematic mapping of rRNA 2'-O methylation during frog development and involvement of the methyltransferase Fibrillarin in eye and craniofacial development in Xenopus laevis., Delhermite J, Tafforeau L, Sharma S, Marchand V, Wacheul L, Lattuca R, Desiderio S, Motorin Y, Bellefroid E, Lafontaine DLJ., PLoS Genet. January 18, 2022; 18 (1): e1010012.                                                              


Remodeling of ribosomal genes in somatic cells by Xenopus egg extract., Østrup O, Hyttel P, Klærke DA, Collas P., Biochem Biophys Res Commun. September 2, 2011; 412 (3): 487-93.


Peter Pan functions independently of its role in ribosome biogenesis during early eye and craniofacial cartilage development in Xenopus laevis., Bugner V, Tecza A, Gessert S, Kühl M., Development. June 1, 2011; 138 (11): 2369-78.                        


Nucleolar protein B23/nucleophosmin regulates the vertebrate SUMO pathway through SENP3 and SENP5 proteases., Yun C, Wang Y, Mukhopadhyay D, Backlund P, Kolli N, Yergey A, Wilkinson KD, Dasso M., J Cell Biol. November 17, 2008; 183 (4): 589-95.          


ERK modulates DNA bending and enhancesome structure by phosphorylating HMG1-boxes 1 and 2 of the RNA polymerase I transcription factor UBF., Stefanovsky VY, Langlois F, Bazett-Jones D, Pelletier G, Moss T., Biochemistry. March 21, 2006; 45 (11): 3626-34.


The Treacher Collins syndrome (TCOF1) gene product is involved in pre-rRNA methylation., Gonzales B, Henning D, So RB, Dixon J, Dixon MJ, Valdez BC., Hum Mol Genet. July 15, 2005; 14 (14): 2035-43.


UBF-binding site arrays form pseudo-NORs and sequester the RNA polymerase I transcription machinery., Mais C, Wright JE, Prieto JL, Raggett SL, McStay B., Genes Dev. January 1, 2005; 19 (1): 50-64.


Nucleolar association of pEg7 and XCAP-E, two members of Xenopus laevis condensin complex in interphase cells., Uzbekov R, Timirbulatova E, Watrin E, Cubizolles F, Ogereau D, Gulak P, Legagneux V, Polyakov VJ, Le Guellec K, Kireev I., J Cell Sci. May 1, 2003; 116 (Pt 9): 1667-78.


Repression of RNA polymerase I transcription by nucleolin is independent of the RNA sequence that is transcribed., Roger B, Moisand A, Amalric F, Bouvet P., J Biol Chem. March 22, 2002; 277 (12): 10209-19.  


On the formation of amplified nucleoli during early Xenopus oogenesis., Mais C, McStay B, Scheer U., J Struct Biol. January 1, 2002; 140 (1-3): 214-26.


UBF binding in vivo is not restricted to regulatory sequences within the vertebrate ribosomal DNA repeat., O'Sullivan AC, Sullivan GJ, McStay B., Mol Cell Biol. January 1, 2002; 22 (2): 657-68.


Maintenance of nucleolar machineries and pre-rRNAs in remnant nucleolus of erythrocyte nuclei and remodeling in Xenopus egg extracts., Verheggen C, Le Panse S, Almouzni G, Hernandez-Verdun D., Exp Cell Res. September 10, 2001; 269 (1): 23-34.


DNA looping in the RNA polymerase I enhancesome is the result of non-cooperative in-phase bending by two UBF molecules., Stefanovsky VY, Pelletier G, Bazett-Jones DP, Crane-Robinson C, Moss T., Nucleic Acids Res. August 1, 2001; 29 (15): 3241-7.


Competitive recruitment of CBP and Rb-HDAC regulates UBF acetylation and ribosomal transcription., Pelletier G, Stefanovsky VY, Faubladier M, Hirschler-Laszkiewicz I, Savard J, Rothblum LI, Côté J, Moss T., Mol Cell. November 1, 2000; 6 (5): 1059-66.


Developmental changes in RNA polymerase I and TATA box-binding protein during early Xenopus embryogenesis., Bell P, Scheer U., Exp Cell Res. April 10, 1999; 248 (1): 122-35.


Cellular regulation of ribosomal DNA transcription:both rat and Xenopus UBF1 stimulate rDNA transcription in 3T3 fibroblasts., Hannan R, Stefanovsky V, Arino T, Rothblum L, Moss T., Nucleic Acids Res. February 15, 1999; 27 (4): 1205-13.


Presence of pre-rRNAs before activation of polymerase I transcription in the building process of nucleoli during early development of Xenopus laevis., Verheggen C, Le Panse S, Almouzni G, Hernandez-Verdun D., J Cell Biol. September 7, 1998; 142 (5): 1167-80.                      


Dimerization and HMG box domains 1-3 present in Xenopus UBF are sufficient for its role in transcriptional enhancement., Sullivan GJ, McStay B., Nucleic Acids Res. August 1, 1998; 26 (15): 3555-61.


The first high-mobility-group box of upstream binding factor assembles across-over DNA junction by basic residues., Hu CH, Wang JM, Tseng HB., Biochem J. July 1, 1998; 333 ( Pt 1) 51-6.


Differential effects of heavy metals on the binding of Xenopus upstream binding factor(xUBF) to DNA., Hsu T, Huang HM, Hu CH., Chemosphere. April 1, 1998; 36 (10): 2367-73.


Nucleosome binding by the polymerase I transactivator upstream binding factor displaces linker histone H1., Kermekchiev M, Workman JL, Pikaard CS., Mol Cell Biol. October 1, 1997; 17 (10): 5833-42.


Association of the nucleolar transcription factor UBF with the transcriptionally inactive rRNA genes of pronuclei and early Xenopus embryos., Bell P, Mais C, McStay B, Scheer U., J Cell Sci. September 1, 1997; 110 ( Pt 17) 2053-63.                  


The repeat organizer, a specialized insulator element within the intergenic spacer of the Xenopus rRNA genes., Robinett CC, O'Connor A, Dunaway M., Mol Cell Biol. May 1, 1997; 17 (5): 2866-75.


The Xenopus RNA polymerase I transcription factor, UBF, has a role in transcriptional enhancement distinct from that at the promoter., McStay B, Sullivan GJ, Cairns C., EMBO J. January 15, 1997; 16 (2): 396-405.


Upstream binding factor stabilizes Rib 1, the TATA-binding-protein-containing Xenopus laevis RNA polymerase I transcription factor, by multiple protein interactions in a DNA-independent manner., Bodeker M, Cairns C, McStay B., Mol Cell Biol. October 1, 1996; 16 (10): 5572-8.


The DNA supercoiling architecture induced by the transcription factor xUBF requires three of its five HMG-boxes., Stefanovsky VY, Bazett-Jones DP, Pelletier G, Moss T., Nucleic Acids Res. August 15, 1996; 24 (16): 3208-15.


HMG box 4 is the principal determinant of species specificity in the RNA polymerase I transcription factor UBF., Cairns C, McStay B., Nucleic Acids Res. November 25, 1995; 23 (22): 4583-90.


Acanthamoeba castellanii contains a ribosomal RNA enhancer binding protein which stimulates TIF-IB binding and transcription under stringent conditions., Yang Q, Radebaugh CA, Kubaska W, Geiss GK, Paule MR., Nucleic Acids Res. November 11, 1995; 23 (21): 4345-52.


The RNA polymerase I transactivator upstream binding factor requires its dimerization domain and high-mobility-group (HMG) box 1 to bend, wrap, and positively supercoil enhancer DNA., Putnam CD, Copenhaver GP, Denton ML, Pikaard CS., Mol Cell Biol. October 1, 1994; 14 (10): 6476-88.


The RNA polymerase I transcription factor UBF is a sequence-tolerant HMG-box protein that can recognize structured nucleic acids., Copenhaver GP, Putnam CD, Denton ML, Pikaard CS., Nucleic Acids Res. July 11, 1994; 22 (13): 2651-7.


Factor C*, the specific initiation component of the mouse RNA polymerase I holoenzyme, is inactivated early in the transcription process., Brun RP, Ryan K, Sollner-Webb B., Mol Cell Biol. July 1, 1994; 14 (7): 5010-21.


Short-range DNA looping by the Xenopus HMG-box transcription factor, xUBF., Bazett-Jones DP, Leblanc B, Herfort M, Moss T., Science. May 20, 1994; 264 (5162): 1134-7.


xUBF, an RNA polymerase I transcription factor, binds crossover DNA with low sequence specificity., Hu CH, McStay B, Jeong SW, Reeder RH., Mol Cell Biol. May 1, 1994; 14 (5): 2871-82.


The RNA polymerase I-specific transcription initiation factor UBF is associated with transcriptionally active and inactive ribosomal genes., Zatsepina OV, Voit R, Grummt I, Spring H, Semenov MV, Trendelenburg MF., Chromosoma. November 1, 1993; 102 (9): 599-611.


Mapping of a sequence essential for the nuclear transport of the Xenopus ribosomal transcription factor xUBF using a simple coupled translation-transport and acid extraction approach., Dimitrov SI, Bachvarov D, Moss T., DNA Cell Biol. April 1, 1993; 12 (3): 275-81.


Recognition of the Xenopus ribosomal core promoter by the transcription factor xUBF involves multiple HMG box domains and leads to an xUBF interdomain interaction., Leblanc B, Read C, Moss T., EMBO J. February 1, 1993; 12 (2): 513-25.


Cooperative binding of the Xenopus RNA polymerase I transcription factor xUBF to repetitive ribosomal gene enhancers., Putnam CD, Pikaard CS., Mol Cell Biol. November 1, 1992; 12 (11): 4970-80.


Multiple domains of the RNA polymerase I activator hUBF interact with the TATA-binding protein complex hSL1 to mediate transcription., Jantzen HM, Chow AM, King DS, Tjian R., Genes Dev. October 1, 1992; 6 (10): 1950-63.


Variants of the Xenopus laevis ribosomal transcription factor xUBF are developmentally regulated by differential splicing., Guimond A, Moss T., Nucleic Acids Res. July 11, 1992; 20 (13): 3361-6.


High resolution studies of the Xenopus laevis ribosomal gene promoter in vivo and in vitro., Read C, Larose AM, Leblanc B, Bannister AJ, Firek S, Smith DR, Moss T., J Biol Chem. June 5, 1992; 267 (16): 10961-7.


xUBF contains a novel dimerization domain essential for RNA polymerase I transcription., McStay B, Frazier MW, Reeder RH., Genes Dev. November 1, 1991; 5 (11): 1957-68.


Heterogeneity in the Xenopus ribosomal transcription factor xUBF has a molecular basis distinct from that in mammals., Bachvarov D, Normandeau M, Moss T., FEBS Lett. August 19, 1991; 288 (1-2): 55-9.


xUBF and Rib 1 are both required for formation of a stable polymerase I promoter complex in X. laevis., McStay B, Hu CH, Pikaard CS, Reeder RH., EMBO J. August 1, 1991; 10 (8): 2297-303.


The RNA polymerase I transcription factor xUBF contains 5 tandemly repeated HMG homology boxes., Bachvarov D, Moss T., Nucleic Acids Res. May 11, 1991; 19 (9): 2331-5.


Enhancers for RNA polymerase I in mouse ribosomal DNA., Pikaard CS, Pape LK, Henderson SL, Ryan K, Paalman MH, Lopata MA, Reeder RH, Sollner-Webb B., Mol Cell Biol. September 1, 1990; 10 (9): 4816-25.


rUBF, an RNA polymerase I transcription factor from rats, produces DNase I footprints identical to those produced by xUBF, its homolog from frogs., Pikaard CS, Smith SD, Reeder RH, Rothblum L., Mol Cell Biol. July 1, 1990; 10 (7): 3810-2.


Molecular mechanisms governing species-specific transcription of ribosomal RNA., Bell SP, Pikaard CS, Reeder RH, Tjian R., Cell. November 3, 1989; 59 (3): 489-97.


The Xenopus ribosomal gene enhancers bind an essential polymerase I transcription factor, xUBF., Pikaard CS, McStay B, Schultz MC, Bell SP, Reeder RH., Genes Dev. November 1, 1989; 3 (11): 1779-88.

???pagination.result.page??? 1