Click here to close Hello! We notice that you are using Internet Explorer, which is not supported by Xenbase and may cause the site to display incorrectly. We suggest using a current version of Chrome, FireFox, or Safari.

Summary Expression Phenotypes Gene Literature (15) GO Terms (6) Nucleotides (275) Proteins (44) Interactants (179) Wiki
XB--966624

Papers associated with zfp36l1



???displayGene.coCitedPapers???
2 ???displayGene.morpholinoPapers???

???pagination.result.count???

???pagination.result.page??? 1

Sort Newest To Oldest Sort Oldest To Newest

Novel phosphorelay-dependent control of ZFP36L1 protein during the cell cycle., Kondo M, Noguchi A, Matsuura Y, Shimada M, Yokota N, Kawahara H., Biochem Biophys Res Commun. June 22, 2018; 501 (2): 387-393.        


Comparative expression analysis of cysteine-rich intestinal protein family members crip1, 2 and 3 during Xenopus laevis embryogenesis., Hempel A, Kühl SJ., Int J Dev Biol. January 1, 2014; 58 (10-12): 841-9.                                              


Efficient high-throughput sequencing of a laser microdissected chromosome arm., Seifertova E, Zimmerman LB, Gilchrist MJ, Macha J, Kubickova S, Cernohorska H, Zarsky V, Owens ND, Sesay AK, Tlapakova T, Krylov V., BMC Genomics. May 28, 2013; 14 357.        


Comparative Functional Analysis of ZFP36 Genes during Xenopus Development., Tréguer K, Faucheux C, Veschambre P, Fédou S, Thézé N, Thiébaud P., PLoS One. January 1, 2013; 8 (1): e54550.                          


Involvement of XZFP36L1, an RNA-binding protein, in Xenopus neural development., Xia YJ, Zhao SH, Mao BY., Dongwuxue Yanjiu. December 1, 2012; 33 (E5-6): E82-8.                


Transcription factor HNF1beta and novel partners affect nephrogenesis., Dudziak K, Mottalebi N, Senkel S, Edghill EL, Rosengarten S, Roose M, Bingham C, Ellard S, Ryffel GU., Kidney Int. July 1, 2008; 74 (2): 210-7.                  


[Conservation of the MC domains in eukaryotic termination factor eRF3], Zhuravleva GA, Zemlianko OM, Le Goff C, Petrova AV, Philippe M, Inge-Vechtomov SG., Genetika. January 1, 2007; 43 (1): 38-44.


The isolation and characterization of XC3H-3b: a CCCH zinc-finger protein required for pronephros development., Kaneko T, Chan T, Satow R, Fujita T, Asashima M., Biochem Biophys Res Commun. August 29, 2003; 308 (3): 566-72.        


The C-terminus of eRF1 defines a functionally important domain for translation termination in Saccharomyces cerevisiae., Eurwilaichitr L, Graves FM, Stansfield I, Tuite MF., Mol Microbiol. May 1, 1999; 32 (3): 485-96.


Eukaryotic release factor 1 (eRF1) abolishes readthrough and competes with suppressor tRNAs at all three termination codons in messenger RNA., Drugeon G, Jean-Jean O, Frolova L, Le Goff X, Philippe M, Kisselev L, Haenni AL., Nucleic Acids Res. June 15, 1997; 25 (12): 2254-8.


Expression of the release factor eRF1 (Sup45p) gene of higher eukaryotes in yeast and mammalian tissues., Urbero B, Eurwilaichitr L, Stansfield I, Tassan JP, Le Goff X, Kress M, Tuite MF., Biochimie. January 1, 1997; 79 (1): 27-36.


The products of the SUP45 (eRF1) and SUP35 genes interact to mediate translation termination in Saccharomyces cerevisiae., Stansfield I, Jones KM, Kushnirov VV, Dagkesamanskaya AR, Poznyakovski AI, Paushkin SV, Nierras CR, Cox BS, Ter-Avanesyan MD, Tuite MF., EMBO J. September 1, 1995; 14 (17): 4365-73.


Termination of translation in eukaryotes is governed by two interacting polypeptide chain release factors, eRF1 and eRF3., Zhouravleva G, Frolova L, Le Goff X, Le Guellec R, Inge-Vechtomov S, Kisselev L, Philippe M., EMBO J. August 15, 1995; 14 (16): 4065-72.


Termination of translation in eukaryotes., Kisselev LL, Frolova LYu., Biochem Cell Biol. January 1, 1995; 73 (11-12): 1079-86.


A highly conserved eukaryotic protein family possessing properties of polypeptide chain release factor., Frolova L, Le Goff X, Rasmussen HH, Cheperegin S, Drugeon G, Kress M, Arman I, Haenni AL, Celis JE, Philippe M., Nature. December 15, 1994; 372 (6507): 701-3.

???pagination.result.page??? 1