Click here to close Hello! We notice that you are using Internet Explorer, which is not supported by Xenbase and may cause the site to display incorrectly. We suggest using a current version of Chrome, FireFox, or Safari.

Summary Expression Gene Literature (71) GO Terms (15) Nucleotides (294) Proteins (43) Interactants (171) Wiki

Papers associated with slc1a3

Search for slc1a3 morpholinos using Textpresso

Limit to papers also referencing gene:

Results 1 - 50 of 71 results

Page(s): 1 2 Next

Sort Newest To Oldest Sort Oldest To Newest

Nervous NDRGs: the N-myc downstream-regulated gene family in the central and peripheral nervous system., Schonkeren SL, Massen M, van der Horst R, Koch A, Vaes N, Melotte V., Neurogenetics. January 1, 2019; 20 (4): 173-186.      

Heterogeneity of the astrocytic AMPA-receptor transcriptome., Mölders A, Koch A, Menke R, Klöcker N., Glia. January 1, 2018; 66 (12): 2604-2616.

Interaction of Excitatory Amino Acid Transporters 1 - 3 (EAAT1, EAAT2, EAAT3) with N-Carbamoylglutamate and N-Acetylglutamate., Burckhardt BC, Burckhardt G., Cell Physiol Biochem. January 1, 2017; 43 (5): 1907-1916.

Photoswitchable Inhibitor of a Glutamate Transporter., Cheng B, Shchepakin D, Kavanaugh MP, Trauner D., ACS Chem Neurosci. January 1, 2017; 8 (8): 1668-1672.

Id genes are essential for early heart formation., Cunningham TJ, Yu MS, McKeithan WL, Spiering S, Carrette F, Huang CT, Bushway PJ, Tierney M, Albini S, Giacca M, Mano M, Puri PL, Sacco A, Ruiz-Lozano P, Riou JF, Umbhauer M, Duester G, Mercola M, Colas AR., Genes Dev. January 1, 2017; 31 (13): 1325-1338.                

Caveolin-1 Sensitivity of Excitatory Amino Acid Transporters EAAT1, EAAT2, EAAT3, and EAAT4., Abousaab A, Warsi J, Elvira B, Lang F., J Membr Biol. June 1, 2016; 249 (3): 239-49.

Up-Regulation of the Excitatory Amino Acid Transporters EAAT1 and EAAT2 by Mammalian Target of Rapamycin., Abousaab A, Uzcategui NL, Elsir B, Lang F., Cell Physiol Biochem. January 1, 2016; 39 (6): 2492-2500.

Tuning the ion selectivity of glutamate transporter-associated uncoupled conductances., Cater RJ, Vandenberg RJ, Ryan RM., J Gen Physiol. January 1, 2016; 148 (1): 13-24.              

Down-Regulation of Excitatory Amino Acid Transporters EAAT1 and EAAT2 by the Kinases SPAK and OSR1., Abousaab A, Warsi J, Elvira B, Alesutan I, Hoseinzadeh Z, Lang F., J Membr Biol. December 1, 2015; 248 (6): 1107-19.

A Mutation in Transmembrane Domain 7 (TM7) of Excitatory Amino Acid Transporters Disrupts the Substrate-dependent Gating of the Intrinsic Anion Conductance and Drives the Channel into a Constitutively Open State., Torres-Salazar D, Jiang J, Divito CB, Garcia-Olivares J, Amara SG., J Biol Chem. September 18, 2015; 290 (38): 22977-90.

Up-Regulation of Excitatory Amino Acid Transporters EAAT1 and EAAT2 by ß-Klotho., Warsi J, Abousaab A, Lang F., Neurosignals. January 1, 2015; 23 (1): 59-70.

Differential regulation of the glutamate transporters GLT-1 and GLAST by GSK3β., Jiménez E, Núñez E, Ibáñez I, Draffin JE, Zafra F, Giménez C., Neurochem Int. December 1, 2014; 79 33-43.

1H-NMR metabolite profiles of different strains of Plasmodium falciparum., Teng R, Lehane AM, Winterberg M, Shafik SH, Summers RL, Martin RE, van Schalkwyk DA, Junankar PR, Kirk K., Biosci Rep. November 21, 2014; 34 (6): e00150.        

The domain interface of the human glutamate transporter EAAT1 mediates chloride permeation., Cater RJ, Vandenberg RJ, Ryan RM., Biophys J. August 5, 2014; 107 (3): 621-629.

Upregulation of excitatory amino acid transporters by coexpression of Janus kinase 3., Warsi J, Luo D, Elvira B, Jilani K, Shumilina E, Hosseinzadeh Z, Lang F., J Membr Biol. August 1, 2014; 247 (8): 713-20.

Cysteine transport through excitatory amino acid transporter 3 (EAAT3)., Watts SD, Torres-Salazar D, Divito CB, Amara SG., PLoS One. January 1, 2014; 9 (10): e109245.            

Niflumic acid activates additional currents of the human glial L-glutamate transporter EAAT1 in a substrate-dependent manner., Takahashi K, Ishii-Nozawa R, Takeuchi K, Nakazawa K, Sekino Y, Sato K., Biol Pharm Bull. January 1, 2013; 36 (12): 1996-2004.

Inhibition of dopamine transporter activity by G protein βγ subunits., Garcia-Olivares J, Torres-Salazar D, Owens WA, Baust T, Siderovski DP, Amara SG, Zhu J, Daws LC, Torres GE., PLoS One. January 1, 2013; 8 (3): e59788.              

Elevated ammonium levels: differential acute effects on three glutamate transporter isoforms., Søgaard R, Novak I, MacAulay N., Am J Physiol Cell Physiol. March 15, 2012; 302 (6): C880-91.

Water and urea permeation pathways of the human excitatory amino acid transporter EAAT1., Vandenberg RJ, Handford CA, Campbell EM, Ryan RM, Yool AJ., Biochem J. October 15, 2011; 439 (2): 333-40.

The central cavity in trimeric glutamate transporters restricts ligand diffusion., Leary GP, Holley DC, Stone EF, Lyda BR, Kalachev LV, Kavanaugh MP., Proc Natl Acad Sci U S A. September 6, 2011; 108 (36): 14980-5.

Protein kinase C-mediated phosphorylation of a single serine residue on the rat glial glutamine transporter SN1 governs its membrane trafficking., Nissen-Meyer LS, Popescu MC, Hamdani el H, Chaudhry FA., J Neurosci. April 27, 2011; 31 (17): 6565-75.

Hetero-oligomerization of neuronal glutamate transporters., Nothmann D, Leinenweber A, Torres-Salazar D, Kovermann P, Hotzy J, Gameiro A, Grewer C, Fahlke C., J Biol Chem. February 4, 2011; 286 (5): 3935-43.

Specificity and actions of an arylaspartate inhibitor of glutamate transport at the Schaffer collateral-CA1 pyramidal cell synapse., Sun W, Hoffman KM, Holley DC, Kavanaugh MP., PLoS One. January 1, 2011; 6 (8): e23765.          

Regulation of the glutamate transporters by JAK2., Hosseinzadeh Z, Bhavsar SK, Sopjani M, Alesutan I, Saxena A, Dërmaku-Sopjani M, Lang F., Cell Physiol Biochem. January 1, 2011; 28 (4): 693-702.

The position of an arginine residue influences substrate affinity and K+ coupling in the human glutamate transporter, EAAT1., Ryan RM, Kortt NC, Sirivanta T, Vandenberg RJ., J Neurochem. July 1, 2010; 114 (2): 565-75.

Two non-steroidal anti-inflammatory drugs, niflumic acid and diclofenac, inhibit the human glutamate transporter EAAT1 through different mechanisms., Takahashi K, Ishii-Nozawa R, Takeuchi K, Nakazawa K, Sato K., J Pharmacol Sci. January 1, 2010; 112 (1): 113-7.

Modulation of glutamate and glycine transporters by niflumic, flufenamic and mefenamic acids., Habjan S, Vandenberg RJ., Neurochem Res. October 1, 2009; 34 (10): 1738-47.

TWIK-1 and TREK-1 are potassium channels contributing significantly to astrocyte passive conductance in rat hippocampal slices., Zhou M, Xu G, Xie M, Zhang X, Schools GP, Ma L, Kimelberg HK, Chen H., J Neurosci. July 1, 2009; 29 (26): 8551-64.

The role of cation binding in determining substrate selectivity of glutamate transporters., Huang S, Ryan RM, Vandenberg RJ., J Biol Chem. February 13, 2009; 284 (7): 4510-5.

Neuronal glutamate transporters vary in substrate transport rate but not in unitary anion channel conductance., Torres-Salazar D, Fahlke C., J Biol Chem. November 30, 2007; 282 (48): 34719-26.

Mutations in transmembrane domains 5 and 7 of the human excitatory amino acid transporter 1 affect the substrate-activated anion channel., Huang S, Vandenberg RJ., Biochemistry. August 28, 2007; 46 (34): 9685-92.

The substituted aspartate analogue L-beta-threo-benzyl-aspartate preferentially inhibits the neuronal excitatory amino acid transporter EAAT3., Esslinger CS, Agarwal S, Gerdes J, Wilson PA, Davis ES, Awes AN, O'Brien E, Mavencamp T, Koch HP, Poulsen DJ, Rhoderick JF, Chamberlin AR, Kavanaugh MP, Bridges RJ., Neuropharmacology. November 1, 2005; 49 (6): 850-61.

Characterization of novel aryl-ether, biaryl, and fluorene aspartic acid and diaminopropionic acid analogs as potent inhibitors of the high-affinity glutamate transporter EAAT2., Dunlop J, McIlvain HB, Carrick TA, Jow B, Lu Q, Kowal D, Lin S, Greenfield A, Grosanu C, Fan K, Petroski R, Williams J, Foster A, Butera J., Mol Pharmacol. October 1, 2005; 68 (4): 974-82.

Regulation of the excitatory amino acid transporter EAAT5 by the serum and glucocorticoid dependent kinases SGK1 and SGK3., Boehmer C, Rajamanickam J, Schniepp R, Kohler K, Wulff P, Kuhl D, Palmada M, Lang F., Biochem Biophys Res Commun. April 8, 2005; 329 (2): 738-42.

The chloride permeation pathway of a glutamate transporter and its proximity to the glutamate translocation pathway., Ryan RM, Mitrovic AD, Vandenberg RJ., J Biol Chem. May 14, 2004; 279 (20): 20742-51.

WAY-855 (3-amino-tricyclo[]heptane-1,3-dicarboxylic acid): a novel, EAAT2-preferring, nonsubstrate inhibitor of high-affinity glutamate uptake., Dunlop J, Eliasof S, Stack G, McIlvain HB, Greenfield A, Kowal D, Petroski R, Carrick T., Br J Pharmacol. November 1, 2003; 140 (5): 839-46.

Regulation of the glutamate transporter EAAT1 by the ubiquitin ligase Nedd4-2 and the serum and glucocorticoid-inducible kinase isoforms SGK1/3 and protein kinase B., Boehmer C, Henke G, Schniepp R, Palmada M, Rothstein JD, Bröer S, Lang F., J Neurochem. September 1, 2003; 86 (5): 1181-8.

Passive water and urea permeability of a human Na(+)-glutamate cotransporter expressed in Xenopus oocytes., MacAulay N, Gether U, Klaeke DA, Zeuthen T., J Physiol. August 1, 2002; 542 (Pt 3): 817-28.

Effects of threo-beta-hydroxyaspartate derivatives on excitatory amino acid transporters (EAAT4 and EAAT5)., Shigeri Y, Shimamoto K, Yasuda-Kamatani Y, Seal RP, Yumoto N, Nakajima T, Amara SG., J Neurochem. October 1, 2001; 79 (2): 297-302.

Cloning and characterization of excitatory amino acid transporters GLT-1 and EAAC1 in canine brain., Sato K, Inaba M, Baba K, Tamahara S, Koshino I, Hikasa Y, Ono K, Kagota K., J Vet Med Sci. September 1, 2001; 63 (9): 997-1002.

Pharmacological characterization of threo-3-methylglutamic acid with excitatory amino acid transporters in native and recombinant systems., Eliasof S, McIlvain HB, Petroski RE, Foster AC, Dunlop J., J Neurochem. April 1, 2001; 77 (2): 550-7.

Water transport by the human Na+-coupled glutamate cotransporter expressed in Xenopus oocytes., MacAulay N, Gether U, Klaerke DA, Zeuthen T., J Physiol. February 1, 2001; 530 (Pt 3): 367-78.

Loss of cell viability by histidine substitution of leucine 325 of the glutamate transporter EAAT1., Choi I, Chiu SY., Biochem Biophys Res Commun. August 28, 2000; 275 (2): 382-5.

Inherited defects of sodium-dependent glutamate transport mediated by glutamate/aspartate transporter in canine red cells due to a decreased level of transporter protein expression., Sato K, Inaba M, Suwa Y, Matsuu A, Hikasa Y, Ono K, Kagota K., J Biol Chem. March 3, 2000; 275 (9): 6620-7.

Differentiation of substrate and nonsubstrate inhibitors of the high-affinity, sodium-dependent glutamate transporters., Koch HP, Kavanaugh MP, Esslinger CS, Zerangue N, Humphrey JM, Amara SG, Chamberlin AR, Bridges RJ., Mol Pharmacol. December 1, 1999; 56 (6): 1095-104.

Macroscopic and microscopic properties of a cloned glutamate transporter/chloride channel., Wadiche JI, Kavanaugh MP., J Neurosci. October 1, 1998; 18 (19): 7650-61.

Molecular basis for differential inhibition of glutamate transporter subtypes by zinc ions., Vandenberg RJ, Mitrovic AD, Johnston GA., Mol Pharmacol. July 1, 1998; 54 (1): 189-96.

Identification of functional domains of the human glutamate transporters EAAT1 and EAAT2., Mitrovic AD, Amara SG, Johnston GA, Vandenberg RJ., J Biol Chem. June 12, 1998; 273 (24): 14698-706.

Localization and function of five glutamate transporters cloned from the salamander retina., Eliasof S, Arriza JL, Leighton BH, Amara SG, Kavanaugh MP., Vision Res. May 1, 1998; 38 (10): 1443-54.

Page(s): 1 2 Next