Click here to close Hello! We notice that you are using Internet Explorer, which is not supported by Xenbase and may cause the site to display incorrectly. We suggest using a current version of Chrome, FireFox, or Safari.

Summary Expression Gene Literature (46) GO Terms (18) Nucleotides (60) Proteins (33) Interactants (105) Wiki
XB--982766

Papers associated with scn4a

Search for scn4a morpholinos using Textpresso

Limit to papers also referencing gene:

Results 1 - 46 of 46 results

Page(s): 1

Sort Newest To Oldest Sort Oldest To Newest

Myasthenic congenital myopathy from recessive mutations at a single residue in NaV1.4., Elia N, Palmio J, Castañeda MS, Shieh PB, Quinonez M, Suominen T, Hanna MG, Männikkö R, Udd B, Cannon SC., Neurology. January 1, 2019; 92 (13): e1405-e1415.            


Anesthetic-sensitive ion channel modulation is associated with a molar water solubility cut-off., Brosnan RJ, Pham TL., BMC Pharmacol Toxicol. September 14, 2018; 19 (1): 57.        


Stac3 enhances expression of human CaV1.1 in Xenopus oocytes and reveals gating pore currents in HypoPP mutant channels., Wu F, Quinonez M, DiFranco M, Cannon SC., J Gen Physiol. January 1, 2018; 150 (3): 475-489.                


Genomic Takeover by Transposable Elements in the Strawberry Poison Frog., Rogers RL, Zhou L, Chu C, Márquez R, Corl A, Linderoth T, Freeborn L, MacManes MD, Xiong Z, Zheng J, Guo C, Xun X, Kronforst MR, Summers K, Wu Y, Yang H, Richards-Zawacki CL, Zhang G, Nielsen R., Mol Biol Evol. January 1, 2018; 35 (12): 2913-2927.              


Loss-of-function mutations in SCN4A cause severe foetal hypokinesia or ''classical'' congenital myopathy., Zaharieva IT, Thor MG, Oates EC, van Karnebeek C, Hendson G, Blom E, Witting N, Rasmussen M, Gabbett MT, Ravenscroft G, Sframeli M, Suetterlin K, Sarkozy A, D'Argenzio L, Hartley L, Matthews E, Pitt M, Vissing J, Ballegaard M, Krarup C, Slørdahl A, Halvorsen H, Ye XC, Zhang LH, Løkken N, Werlauff U, Abdelsayed M, Davis MR, Feng L, Phadke R, Sewry CA, Morgan JE, Laing NG, Vallance H, Ruben P, Hanna MG, Lewis S, Kamsteeg EJ, Männikkö R, Muntoni F., Brain. March 1, 2016; 139 (Pt 3): 674-91.            


Differential effects of the recombinant toxin PnTx4(5-5) from the spider Phoneutria nigriventer on mammalian and insect sodium channels., Paiva AL, Matavel A, Peigneur S, Cordeiro MN, Tytgat J, Diniz MR, de Lima ME., Biochimie. February 1, 2016; 121 326-35.


Congruent pattern of accessibility identifies minimal pore gate in a non-symmetric voltage-gated sodium channel., Oelstrom K, Chanda B., Nat Commun. January 1, 2016; 7 11608.


Heterologous expression of NaV1.9 chimeras in various cell systems., Goral RO, Leipold E, Nematian-Ardestani E, Heinemann SH., Pflugers Arch. December 1, 2015; 467 (12): 2423-35.


Retention of duplicated ITAM-containing transmembrane signaling subunits in the tetraploid amphibian species Xenopus laevis., Guselnikov SV, Grayfer L, De Jesús Andino F, Rogozin IB, Robert J, Robert J, Taranin AV., Dev Comp Immunol. November 1, 2015; 53 (1): 158-68.            


The Scorpion Toxin Tf2 from Tityus fasciolatus Promotes Nav1.3 Opening., Camargos TS, Bosmans F, Rego SC, Mourão CB, Schwartz EF., PLoS One. January 1, 2015; 10 (6): e0128578.        


Disrupted coupling of gating charge displacement to Na+ current activation for DIIS4 mutations in hypokalemic periodic paralysis., Mi W, Rybalchenko V, Cannon SC., J Gen Physiol. August 1, 2014; 144 (2): 137-45.        


Asymmetric functional contributions of acidic and aromatic side chains in sodium channel voltage-sensor domains., Pless SA, Elstone FD, Niciforovic AP, Galpin JD, Yang R, Kurata HT, Ahern CA., J Gen Physiol. May 1, 2014; 143 (5): 645-56.              


Tuning voltage-gated channel activity and cellular excitability with a sphingomyelinase., Combs DJ, Shin HG, Xu Y, Xu Y, Ramu Y, Lu Z., J Gen Physiol. October 1, 2013; 142 (4): 367-80.                    


A naturally occurring amino acid substitution in the voltage-dependent sodium channel selectivity filter affects channel gating., Wu M, Ye N, Sengupta B, Zakon HH., J Comp Physiol A Neuroethol Sens Neural Behav Physiol. October 1, 2013; 199 (10): 829-42.


Domain IV voltage-sensor movement is both sufficient and rate limiting for fast inactivation in sodium channels., Capes DL, Goldschen-Ohm MP, Arcisio-Miranda M, Bezanilla F, Chanda B., J Gen Physiol. August 1, 2013; 142 (2): 101-12.              


Molecular mechanism of voltage sensing in voltage-gated proton channels., Gonzalez C, Rebolledo S, Perez ME, Larsson HP., J Gen Physiol. March 1, 2013; 141 (3): 275-85.              


Voltage-sensor movements describe slow inactivation of voltage-gated sodium channels II: a periodic paralysis mutation in Na(V)1.4 (L689I)., Silva JR, Goldstein SA., J Gen Physiol. March 1, 2013; 141 (3): 323-34.            


Voltage-sensor movements describe slow inactivation of voltage-gated sodium channels I: wild-type skeletal muscle Na(V)1.4., Silva JR, Goldstein SA., J Gen Physiol. March 1, 2013; 141 (3): 309-21.                


Multiple pore conformations driven by asynchronous movements of voltage sensors in a eukaryotic sodium channel., Goldschen-Ohm MP, Capes DL, Oelstrom KM, Chanda B., Nat Commun. January 1, 2013; 4 1350.                


Identification of Navβ1 residues involved in the modulation of the sodium channel Nav1.4., Islas AA, Sánchez-Solano A, Scior T, Millan-PerezPeña L, Salinas-Stefanon EM., PLoS One. January 1, 2013; 8 (12): e81995.        


Intermediate state trapping of a voltage sensor., Lacroix JJ, Pless SA, Maragliano L, Campos FV, Galpin JD, Ahern CA, Roux B, Bezanilla F., J Gen Physiol. December 1, 2012; 140 (6): 635-52.                      


Gating pore currents and the resting state of Nav1.4 voltage sensor domains., Gosselin-Badaroudine P, Delemotte L, Moreau A, Klein ML, Chahine M., Proc Natl Acad Sci U S A. November 20, 2012; 109 (47): 19250-5.


Infrared light excites cells by changing their electrical capacitance., Shapiro MG, Homma K, Villarreal S, Richter CP, Bezanilla F., Nat Commun. March 13, 2012; 3 736.          


Estimating the voltage-dependent free energy change of ion channels using the median voltage for activation., Chowdhury S, Chanda B., J Gen Physiol. January 1, 2012; 139 (1): 3-17.            


Molecular mechanism of allosteric modification of voltage-dependent sodium channels by local anesthetics., Arcisio-Miranda M, Muroi Y, Chowdhury S, Chanda B., J Gen Physiol. November 1, 2010; 136 (5): 541-54.                


Isolation and characterization of two novel scorpion toxins: The alpha-toxin-like CeII8, specific for Na(v)1.7 channels and the classical anti-mammalian CeII9, specific for Na(v)1.4 channels., Vandendriessche T, Olamendi-Portugal T, Zamudio FZ, Possani LD, Tytgat J., Toxicon. September 15, 2010; 56 (4): 613-23.


Slow inactivation of the NaV1.4 sodium channel in mammalian cells is impeded by co-expression of the beta1 subunit., Webb J, Wu FF, Cannon SC., Pflugers Arch. April 1, 2009; 457 (6): 1253-63.


Alpha-scorpion toxin impairs a conformational change that leads to fast inactivation of muscle sodium channels., Campos FV, Chanda B, Beirão PS, Bezanilla F., J Gen Physiol. August 1, 2008; 132 (2): 251-63.                      


Two novel sodium channel inhibitors from Heriaeus melloteei spider venom differentially interacting with mammalian channel''s isoforms., Billen B, Vassilevski A, Nikolsky A, Tytgat J, Grishin E., Toxicon. August 1, 2008; 52 (2): 309-17.


An extracellular Cu2+ binding site in the voltage sensor of BK and Shaker potassium channels., Ma Z, Wong KY, Horrigan FT., J Gen Physiol. May 1, 2008; 131 (5): 483-502.                      


Involvement of batrachotoxin binding sites in ginsenoside-mediated voltage-gated Na+ channel regulation., Lee JH, Lee BH, Choi SH, Yoon IS, Shin TJ, Pyo MK, Lee SM, Kim HC, Nah SY., Brain Res. April 8, 2008; 1203 61-7.


Structure/function characterization of micro-conotoxin KIIIA, an analgesic, nearly irreversible blocker of mammalian neuronal sodium channels., Zhang MM, Green BR, Catlin P, Fiedler B, Azam L, Chadwick A, Terlau H, McArthur JR, French RJ, Gulyas J, Rivier JE, Smith BJ, Norton RS, Olivera BM, Yoshikami D, Bulaj G., J Biol Chem. October 19, 2007; 282 (42): 30699-706.


A Na+ channel mutation linked to hypokalemic periodic paralysis exposes a proton-selective gating pore., Struyk AF, Cannon SC., J Gen Physiol. July 1, 2007; 130 (1): 11-20.          


Point mutations at the local anesthetic receptor site modulate the state-dependent block of rat Na v1.4 sodium channels by pyrazoline-type insecticides., Silver KS, Soderlund DM., Neurotoxicology. May 1, 2007; 28 (3): 655-63.


A cation-pi interaction discriminates among sodium channels that are either sensitive or resistant to tetrodotoxin block., Santarelli VP, Eastwood AL, Dougherty DA, Horn R, Ahern CA., J Biol Chem. March 16, 2007; 282 (11): 8044-51.


Isolation and structure-activity of mu-conotoxin TIIIA, a potent inhibitor of tetrodotoxin-sensitive voltage-gated sodium channels., Lewis RJ, Schroeder CI, Ekberg J, Nielsen KJ, Loughnan M, Thomas L, Adams DA, Drinkwater R, Adams DJ, Alewood PF., Mol Pharmacol. March 1, 2007; 71 (3): 676-85.


Gating pore current in an inherited ion channelopathy., Sokolov S, Scheuer T, Catterall WA., Nature. March 1, 2007; 446 (7131): 76-8.


Differential sensitivity of rat voltage-sensitive sodium channel isoforms to pyrazoline-type insecticides., Silver KS, Soderlund DM., Toxicol Appl Pharmacol. July 15, 2006; 214 (2): 209-17.


Augmentation of Cav3.2 T-type calcium channel activity by cAMP-dependent protein kinase A., Kim JA, Park JY, Kang HW, Huh SU, Jeong SW, Lee JH, Lee JH., J Pharmacol Exp Ther. July 1, 2006; 318 (1): 230-7.


Four novel tarantula toxins as selective modulators of voltage-gated sodium channel subtypes., Bosmans F, Rash L, Zhu S, Diochot S, Lazdunski M, Escoubas P, Tytgat J., Mol Pharmacol. February 1, 2006; 69 (2): 419-29.


A mutation in the local anaesthetic binding site abolishes toluene effects in sodium channels., Gauthereau MY, Salinas-Stefanon EM, Cruz SL., Eur J Pharmacol. December 28, 2005; 528 (1-3): 17-26.


State-dependent block of rat Nav1.4 sodium channels expressed in xenopus oocytes by pyrazoline-type insecticides., Silver K, Soderlund DM., Neurotoxicology. June 1, 2005; 26 (3): 397-406.


Molecular motions of the outer ring of charge of the sodium channel: do they couple to slow inactivation?, Xiong W, Li RA, Tian Y, Tomaselli GF., J Gen Physiol. September 1, 2003; 122 (3): 323-32.            


The pentapeptide QYNAD does not block voltage-gated sodium channels., Cummins TR, Renganathan M, Stys PK, Herzog RI, Scarfo K, Horn R, Dib-Hajj SD, Waxman SG., Neurology. January 28, 2003; 60 (2): 224-9.


A tryptophan residue (W736) in the amino-terminus of the P-segment of domain II is involved in pore formation in Na(v)1.4 voltage-gated sodium channels., Carbonneau E, Vijayaragavan K, Chahine M., Pflugers Arch. October 1, 2002; 445 (1): 18-24.


Specific neosaxitoxin interactions with the Na+ channel outer vestibule determined by mutant cycle analysis., Penzotti JL, Lipkind G, Fozzard HA, Dudley SC., Biophys J. February 1, 2001; 80 (2): 698-706.

Page(s): 1

Xenbase: The Xenopus Model Organism Knowledgebase.
Version: 4.15.0
Major funding for Xenbase is provided by grant P41 HD064556