Click here to close Hello! We notice that you are using Internet Explorer, which is not supported by Xenbase and may cause the site to display incorrectly. We suggest using a current version of Chrome, FireFox, or Safari.
Search Criteria
Gene/CloneSpeciesStageAnatomy ItemExperimenter
gdf3xenopus   

Too many results?Too few results?

Experiment details for gdf3

Eimon PM and Harland RM (2002) Assay

Effects of heterodimerization and proteolytic processing on Derrière and Nodal activity: implications for mesoderm induction in Xenopus.

Gene Clone Species Stages Anatomy
gdf3.S laevis unspecified stage mesoderm , marginal zone

Display additional annotations [+]
  Fig. 3. A dominant negative derrière cleavage mutant (CM-der) inhibits mesoderm induction in Xenopus embryos. The effect of CM-der on mesoderm formation is similar to that of the short form of cerberus (cer-S) but differs markedly from the activity of the xnr2 cleavage mutant (CM-xnr2). Embryos were injected with either 2 ng of CM-der, 2 ng of CM-xnr2, or 500 pg of cer-S mRNA into a single blastomere at the four-cell stage along with 200 pg of a β-galactosidase lineage tracer. Stage 11 embryos were stained with red-gal to mark the site of injection and analyzed by whole-mount in situ hybridization. (A-D) Expression of the mesodermal marker xbra is inhibited in a similar manner by CM-der and cer-S; CM-xnr2 causes expansion of xbra into the animal hemisphere. (E-G) Expression of derrière is significantly diminished by cer-S but is expended into the animal hemisphere by CM-xnr2. (H-J) Xnr2 expression is strongly inhibited by cer-S and appears to be partially attenuated in the presence of CM-der. In H-J, embryos have been oriented with the site of mRNA injection at the top. (K) Mechanism of inhibition by cleavage mutant constructs. (L) derrière activity is blocked by both CM-der and cer-S in animal caps. Animal poles were injected at the one-cell stage with 200 pg derrière mRNA and co-injected with either 2 ng CM-der or 500 pg cer-S. By itself, derrière induces xbra and xnr1, as well as upregulating its own transcription. CM-der shows no mesoderm-inducing activity on its own and significantly reduces mesoderm induction by wild-type derrière. cer-S also blocks mesoderm formation in animal caps expressing derrière.

Gene Clone Species Stages Anatomy
gdf3.S laevis NF stage 8 mesoderm , marginal zone , endoderm
gdf3.S laevis NF stage 10.25 to NF stage 11 mesoderm , marginal zone , upper blastopore lip , endoderm

Display additional annotations [+]
  Fig. 1. An analysis of the temporal and spatial expression pattern of derrière transcripts relative to other early markers of mesoderm and endoderm. (A) Analysis of temporal expression patterns by RT-PCR in Xenopus embryos. derrière transcripts are first detected at stage 8.5 at the same time as xnr1 and xnr4 as well as the homeobox gene mix1. Transcription of the mesodermal marker xbra and the dorsal specific marker cerberus are detected soon afterwards. (B-S) Whole-mount in situ hybridization analysis of Xenopus embryos at stages 8.5, 10+ and 11. The upper panels in each row show a representative embryo bisected through the animal-vegetal axis and oriented with the dorsal side on the right. The lower panels show a vegetal view of whole embryos, again oriented with dorsal sides to the right. (B-G) derrière, sox17β and bix4 transcripts are detected in distinct but overlapping domains at stage 8.5. Localized expression of xnr2, xbra and gsc is not apparent at this stage. (H-M) All transcripts show strong localized expression by stage 10+. derrière expression mirrors that of xbra, while xnr2 transcripts are restricted to the superficial cells of the marginal zone and greatly enriched on the dorsal side. (N-S) Expression in stage 11 embryos. Again derrière transcripts are detected throughout the region of the embryo expressing xbra. Arrowheads indicate the location of the dorsal blastopore lip in stage 10+ embryos.