Click here to close Hello! We notice that you are using Internet Explorer, which is not supported by Xenbase and may cause the site to display incorrectly. We suggest using a current version of Chrome, FireFox, or Safari.
Search Criteria
Gene/CloneSpeciesStageAnatomy ItemExperimenter
hhexxenopus   

Too many results?Too few results?

Experiment details for hhex

Walmsley M et al. (2002) Assay

Adult and embryonic blood and endothelium derive from distinct precursor populations which are differentially programmed by BMP in Xenopus.

Gene Clone Species Stages Anatomy
hhex.L laevis NF stage 17 endoderm , anterior , liver primordium

Display additional annotations [+]
  Fig. 2. Characterisation of the embryonic/aVBI progenitor population. Blood and endothelial genes are co-expressed in the anterior ventral mesoderm of the mid-neurula stage embryo. Expression of blood and endothelial genes in the ventral mesoderm of the stage 17 embryo was analysed by whole-mount in situ hybridisation (A) and in situ hybridisation on sections (B). Lineage labelling experiments (C) indicate that the blastomeres of the 32-cell stage embryo, which give rise to the aVBI, also give rise to the anterior ventral progenitor population. (A) Single whole-mount in situ hybridisation analysis of the expression of GATA2 (a), Xfli1 (b), SCL (c), Xaml (d) and XHex (e); and double whole mount in situ hybridisation analysis of the expression of SCL + Xfli1 (f) and SCL+ XHex (g) in the stage 17 Xenopus embryo. Anterior views in all cases with dorsal towards the top. Black arrows indicate SCL+Xfli1- cells in f and SCL+XHex- cells in g. (B) Expression of Xfli1 (b), SCL (c), Xaml (d,h), XHex (e), GATA2 (f) and the cement gland marker XCG1 (CG-1, g) in the ventral mesoderm of the stage 17 Xenopus embryo. (a) A sagittal section of the stage 17 embryo, red square indicates the area shown in photographs. (i) Summary of gene expression analysis. In situ hybridisation was performed on 10 μm sequential sections. (b-f) Sections from a single embryo and (g,h) sections from a second embryo. Anterior is towards the left and ventral is towards the bottom in all cases. (C) Lineage trace showing the origins of the ventral progenitor population and its fate. (a) Representation of the 32-cell stage embryo with the D1 blastomere highlighted in blue. (b) Embryo showing localisation of D1 progeny at stage 17 of development, anterior view with dorsal towards the top. (c) Sagittal section (10 μm) of stage 17, D1 β -gal injected embryo. Red arrow indicates β-gal positive cells located in the anterior ventral mesoderm (blood and endothelial progenitors). (d,e) Transverse 10 μm wax sections showing localisation of D1 progeny at stage 41. Lineage trace is seen in a mature vessel, the ventral aorta (red arrowhead, d and e), and in circulating blood cells within the vessel (red arrow, e). Lineage label was also seen in the endocardium and vitelline veins in seven out of seven embryos. ARCH, archenteron; CG, cement gland; NF, neural fold.

Gene Clone Species Stages Anatomy
hhex.L laevis NF stage 26 ventral blood island , endothelial cell

Display additional annotations [+]
  Fig. 3. Characterisation of the DLP progenitor population. (A) The dorsal aorta and intra aortic haematopoietic clusters derive from the C3 blastomere. Transverse 10 μm wax section through the trunk at the level of the pronephric duct of a stage 43 embryo that had been injected with 250 pg beta-gal RNA in the C3 blastomere at the 32-cell stage. At stage 43, beta-gal is located in the endothelial wall of the dorsal aorta (red arrowhead) and in clusters of blood stem cells on the floor of the aorta (red arrow). Dorsal is towards the top. Black arrowheads indicate the pronephric ducts; n, notochord. (B) Timing of gene expression in the DLP. Expression profiles were obtained by analysis of embryos subjected to whole-mount in situ hybridisation. Arrows indicate expression before stage 18 (Xlim1) or after stage 36 (Xlim1, Xfli1, GATA3, Xmsr and XHex). (C) Analysis of gene expression in the DLP of the stage 26 embryo. Embryos were subjected to whole-mount double in situ hybridisation and then 10 μm transverse wax sections cut at the level of the pronephric duct in order to analyse gene expression. (a-c) Xlim1+Xfli1; (d-f) Xlim1 +SCL; (g-i) Xlim1+XHex; (j-l) Xlim1+GATA3; (m-o) Xfli1+SCL; (p-r) GATA3+Xfli1; (s-u) GATA3+SCL; (v-x) GATA3+XHex; (y-aa) GATA3+GATA2; (bb-dd) Xlim1+Xmsr, (ee-gg) GATA3+Xmsr. Inset, summary of gene expression analysis in the DLP. Dorsal is towards the top in all cases; in a,d,g,j,m,p,s,v,y,bb,ee, anterior is towards the left and lines indicate the levels where sections shown were taken.

Gene Clone Species Stages Anatomy
hhex.L laevis NF stage 26 head region , ventral blood island , foregut , anterior dorsal lateral plate region

Display additional annotations [+]
  Fig. 4. Effects of tBR RNA injection on VBI and DLP development. tBR RNA (800 pg-1 ng total) was injected either into the VMZ or DMZ of four-cell stage embryos and the effects on VBI and DLP development analysed by whole-mount in situ hybridisation of stage 26 embryos. Row 1, globin expression; row 2, Xaml expression; rows 3 and 4, SCL expression; rows 5 and 6, Xfli1 expression; and rows 7 and 8, XHex expression. Rows 1,2,4,6,8, ventral views; rows 3,5,7, lateral views. t, tail; h, head. Anterior is towards the left unless otherwise stated. In rows 3, 5 and 7, dorsal is towards the top. Black arrows indicate the DLP; red arrows indicate the vitelline veins; black arrowheads indicate the developing liver. Staining for a particular gene was performed for the same time in all treatments.