Click here to close Hello! We notice that you are using Internet Explorer, which is not supported by Xenbase and may cause the site to display incorrectly. We suggest using a current version of Chrome, FireFox, or Safari.
Search Criteria
Gene/CloneSpeciesStageAnatomy ItemExperimenter
lhx2xenopus   

Too many results?Too few results?

Experiment details for lhx2

Fish MB et al. (2015) Assay

Xenopus mutant reveals necessity of rax for specifying the eye field which otherwise forms tissue with telencephalic and diencephalic character.

Gene Clone Species Stages Anatomy
lhx2 tropicalis NF stage 18 retina , eye , eye primordium , optic vesicle
lhx2 tropicalis NF stage 21 retina , diencephalon , pre-chordal neural plate , eye , optic vesicle , [+]

Display additional annotations [+]
  Fig. 3. Morphological changes in rax mutant embryos can be detected by St. 21, prior to differential expression of key EFTFs, but following up-regulation of arx. Up-regulation of telencephalic marker foxg1 is also observed by St. 21. (A) Histological sections through St. 20 and St. 21 embryos reveal no detectable change in optic vesicle morphology at St. 20, but a lack of thinning of the posterior optic vesicle wall in mutant embryos at St. 21 (red arrows). The plane of sectioning is indicated above, and is the same plane for all stages shown throughout (serial sections were carefully examined to correctly match the plane of sectioning). The anterior and posterior ends of sections are marked A and P, respectively. (B) Examination of key EFTFs (pax6 and lhx2 shown) by in situ hybridization at St. 18 and St. 21 reveals no detectable change in expression. (C) By St. 19, anterior expansion of the arx expression domain is observed in mutant embryos (blue arrows). This expansion becomes more pronounced at St. 21 (red arrows). (D) Examination of telencephalic marker foxg1 at stages 21 and 24 reveals lateral expansion in rax mutant embryos (red arrows). At stage 24, lateral bulging of the optic vesicles can be observed in whole embryos from an anterior view (white arrows); these bulges are not observed in rax mutant embryos, and foxg1 expression is expanded into a region of the territory the optic vesicle would occupy in wildtype embryos. (E) Histological sections at St. 26, St. 28 and St. 30 show the increasing divergence of wildtype and mutant morphologies. By St. 30, the optic cup and lens tissue are forming in wildtype embryos (black arrows and arrowhead, respectively), but typically fail to form in rax mutant embryos. In panels A and E, a minimum of three embryos for each stage and genotype were sectioned and consistently displayed the shown morphology. Scale bars in panels A and E measure 75 μm.