Click here to close Hello! We notice that you are using Internet Explorer, which is not supported by Xenbase and may cause the site to display incorrectly. We suggest using a current version of Chrome, FireFox, or Safari.
Search Criteria
Gene/CloneSpeciesStageAnatomy ItemExperimenter
myh6xenopus   

Too many results?Too few results?

Experiment details for myh6

Small EM et al. (2005) Assay

Myocardin is sufficient and necessary for cardiac gene expression in Xenopus.

Gene Clone Species Stages Anatomy
myh6.S laevis NF stage 14
myh6.S laevis NF stage 28 heart , cardiac mesoderm , heart primordium

Display additional annotations [+]
  Fig. 3. Myocardin activates ectopic expression of myocardial markers in the Xenopus embryo. (A-H) 125 pg of myocardin mRNA was injected into one cell of an eightcell embryo, which was then assayed for cardiac markers by whole-mount in situ hybridization. No expression of the MHCα gene is observed in uninjected stage 14 embryos (A), however widespread transcription of MHCα is observed in myocardin-injected embryos (B). Similarly, cardiac α-actin is observed specifically in the presomitic mesoderm at stage 14 control embryos (C), while myocardin injected embryos display widespread expression of cardiac α-actin on the side of injection (D). (E) Section through the embryo in D shows ectopic cardiac α-actin expression (arrows) in the ectodermal and mesodermal tissue layers. Ectopic cardiac marker expression is not observed in endodermal tissues. (F) MHCα expression is heartspecific at stage 28 in un-injected control embryos, but myocardin overexpression, (G), causes MHCα transcription in ectopic locations. Arrows indicate normal cardiac expression. (H) Section through the embryo in G shows patches of ectopic MHCα expression in the neural tube (nt) and eye. (I) Fluorescence microscopy of a stage 29 Xenopus embryo co-transgenic for NβT-GFP and NβT-myocardin showing GFP expression in neural tissues. (J) In situ hybridization analysis of NβT-GFP/NβT-myocardin co-transgenic embryos using a MHCα probe shows ectopic expression of MHCα in neural tissues.

Gene Clone Species Stages Anatomy
myh6.S laevis NF stage 29 and 30 to NF stage 33 and 34 heart , myocardium , cardiac mesoderm , heart primordium

Display additional annotations [+]
  Fig. 6. Inhibition of myocardin activity using antisense morpholino (MO) oligos. (A,B) Control experiment where myocardin MO1 inhibits translation of a transcript containing the myocardin 5′UTR fused to the EGFP coding region. mRNA (400 pg) was injected into one-cell Xenopus embryos with or without 10 ng of myocardin MO1 and the embryos were then assayed for the presence of GFP transcript and protein at stage 17. The presence of MO1 did not affect the levels of EGFP transcript as detected by RT-PCR (A) but did significantly reduce the amount of translated GFP protein as detected by western blotting (B). (C) Xenopus embryos were injected with 10 ng of myocardin MO1 into one blastomere at the two-cell stage and cultured until stage 29, when cardiac differentiation markers are normally expressed in the symmetric heart patches. Uninjected control embryos (labeled C) or myocardin MO1-injected embryos (labeled MO) were assayed by in situ hybridization. Myocardin MO1 inhibited expression of MHCα and MLC2 on the side of injection (right side of figure) but did not affect the expression of Nkx2-5. (D) Sections through the heart of uninjected (labeled C) and onesided MO1-injected (labeled MO) Xenopus embryos at the linear heart tube stage (stage 34). Embryos were assayed by in situ hybridization for expression of either MHCα or Nkx2-5 transcripts to mark the location of myocardial cells and to confirm a reduction in MHCα expression on the injected side (right side) of the MO-injected embryo. Uninjected controls showing normal heart tube morphogenesis are included for comparison.