Click here to close Hello! We notice that you are using Internet Explorer, which is not supported by Xenbase and may cause the site to display incorrectly. We suggest using a current version of Chrome, FireFox, or Safari.
Search Criteria
Gene/CloneSpeciesStageAnatomy ItemExperimenter
otx2xenopus   

Too many results?Too few results?

Experiment details for otx2

Transmembrane voltage potential controls embryonic eye patterning in Xenopus laevis.

Transmembrane voltage potential controls embryonic eye patterning in Xenopus laevis.

Gene Clone Species Stages Anatomy
otx2.S laevis NF stage 29 and 30 retina , eye

Display additional annotations [+]
  Fig. 4. Ectopic eyes induced by Vmem signal are similar to endogenous eyes and exhibit ectopic expression of canonical eye development factors. (A) Confocal images of sections through endogenous (i,iii,v,vii,ix) and ectopic (ii,iv,vi,viii,x) eyes immunostained for the retinal differentiation markers Glutamine synthetase (Muller cells, red), Islet-1 (amacrine cells, cyan), XAP2 (rods, yellow) and Calbindin (cones, green) and representative phase contrast images show similar differentiated retinal cell populations in endogenous and ectopic eyes. (B) Confocal images of sections through endogenous (i) and ectopic (ii) eyes co-immunostained for retinal cell differentiation markers of rods (yellow), Muller cells (magenta) and amacrine cells (cyan) and for nuclei (blue) show a similar organization of differentiated retinal cell populations. (C) In situ hybridization of stage 30 control embryos (i,iii,v) and embryos microinjected with DNKir6.1p mRNA (ii,iv,vi) in all four cells at the four-cell stage for eye development markers Otx2 (i,ii), Pax6 (iii,iv) and Rx1 (v,vi). Red arrowheads mark ectopic expression, and green arrowheads mark endogenous expression. No ectopic Otx2 expression is observed in the injected embryos.