Click here to close Hello! We notice that you are using Internet Explorer, which is not supported by Xenbase and may cause the site to display incorrectly. We suggest using a current version of Chrome, FireFox, or Safari.
Search Criteria
Gene/CloneSpeciesStageAnatomy ItemExperimenter
prkcixenopus cardiac myocyte 

Too many results?Too few results?

Experiment details for prkci

Spatiotemporally Controlled Mechanical Cues Drive Progenitor Mesenchymal-to-Epithelial Transition Enabling Proper Heart Form...

Good quality Poor quality
Gene Clone Species Stages Anatomy
prkci.L laevis NF stage 28 cardiac myocyte

Display additional annotations [+]
  Figure 2. (A–C) Modulators of tissue compliance applied during stages of early heart development exhibit defects, including pericardial and neural edemas (A) (see arrows; scale bar, 1 mm), altered AP length (B), and increased rates of edema per clutch (C) (n = 30–35 embryos over four clutches). (D) Compliance measured by microaspiration of HFR. (E) Compliance at stage 22 confirms that blebbistatin and Y27632 increase and calyculin A decreases compliance (n = 11–17 embryos per treatment over three clutches). (F) Transverse sections through HFR at stage 28 show changes in polarity (aPKC or ZO-1) within the progenitor population (red). Lower panels show the epithelial marker masked using tropomyosin expression (scale bar, 50 μm). (G) Apical intensity after small-molecule inhibitor treatment (n = 9–13 embryos over four clutches). (H) Representative lateral confocal sections of stage 39 tadpole hearts (scale bar, 100 μm). (I) Cardiac anatomy after stage-specific inhibitor treatments as shown in Figure S2 (n = 5 embryos per treatment per period). Error bars represent mean ± SEM. ∗p < 0.05, ∗∗p < 0.01, ∗∗∗p < 0.001. See also Figures S1, S2, and S3A.
Xenbase: The Xenopus Model Organism Knowledgebase.
Version: 4.14.0
Major funding for Xenbase is provided by grant P41 HD064556