Due to necessary maintenance, Xenbase will be unavailable December 24-30, 2014. We apologize for the inconvenience.

Click on this message to dismiss it.
Click here to close Hello! We notice that you are using Internet Explorer, which is not supported by Xenbase and may cause the site to display incorrectly. We suggest using a current version of Chrome, FireFox, or Safari.
XB-ART-10227
Nat Neurosci. October 1, 2000; 3 (10): 1004-11.

Postsynaptic CPG15 promotes synaptic maturation and presynaptic axon arbor elaboration in vivo.

Cantallops I , Haas K , Cline HT .


Abstract
The formation of CNS circuits is characterized by the coordinated development of neuronal structure and synaptic function. The activity-regulated candidate plasticity gene 15 (cpg15) encodes a glycosylphosphatidylinositol (GPI)-linked protein whose in vivo expression increases the dendritic arbor growth rate of Xenopus optic tectal cells. We now demonstrate that tectal cell expression of CPG15 significantly increases the elaboration of presynaptic retinal axons by decreasing rates of branch retractions. Whole-cell recordings from optic tectal neurons indicate that CPG15 expression promotes retinotectal synapse maturation by recruiting functional AMPA receptors to synapses. Expression of truncated CPG15, lacking its GPI anchor, does not promote axon arbor growth and blocks synaptic maturation. These results suggest that CPG15 coordinately increases the growth of pre- and postsynaptic structures and the number and strength of their synaptic contacts.

PubMed ID: 11017173
Article link: Nat Neurosci.

Genes referenced: gnpda1 gpi nrn1
Antibodies referenced:
Morpholinos referenced:

My Xenbase: [ Log-in / Register ]
version: [3.3.1]


Major funding for Xenbase is provided by the National Institute of Child Health and Human Development, grant P41 HD064556