Click here to close Hello! We notice that you are using Internet Explorer, which is not supported by Xenbase and may cause the site to display incorrectly. We suggest using a current version of Chrome, FireFox, or Safari.
XB-ART-10280
Nature 2000 Sep 14;4076801:189-94. doi: 10.1038/35025070.
Show Gene links Show Anatomy links

Identification of a vesicular glutamate transporter that defines a glutamatergic phenotype in neurons.

Takamori S , Rhee JS , Rosenmund C , Jahn R .


???displayArticle.abstract???
Glutamate is the major excitatory neurotransmitter in the mammalian central nervous system. Synaptic vesicles are loaded with neurotransmitter by means of specific vesicular transporters. Here we show that expression of BNPI, a vesicle-bound transporter associated with sodium-dependent phosphate transport, results in glutamate uptake by intracellular vesicles. Substrate specificity and energy dependence are very similar to glutamate uptake by synaptic vesicles. Stimulation of exocytosis--fusion of the vesicles with the cell membrane and release of their contents--resulted in quantal release of glutamate from BNPI-expressing cells. Furthermore, we expressed BNPI in neurons containing GABA (gamma-aminobutyric acid) and maintained them as cultures of single, isolated neurons that form synapses to themselves. After stimulation of these neurons, a component of the postsynaptic current is mediated by glutamate as it is blocked by a combination of the glutamate receptor antagonists, but is insensitive to a GABA(A) receptor antagonist. We conclude that BNPI functions as vesicular glutamate transporter and that expression of BNPI suffices to define a glutamatergic phenotype in neurons.

???displayArticle.pubmedLink??? 11001057
???displayArticle.link??? Nature


Species referenced: Xenopus
Genes referenced: slc17a7

References :
Rothstein, Neurobiology. Bundling up excitement. 2000, Pubmed