Click here to close Hello! We notice that you are using Internet Explorer, which is not supported by Xenbase and may cause the site to display incorrectly. We suggest using a current version of Chrome, FireFox, or Safari.
Dev Biol August 15, 2000; 224 (2): 275-85.

Patterning the early zebrafish by the opposing actions of bozozok and vox/vent.

Melby AE , Beach C , Mullins M , Kimelman D .

Fish and frog embryos are patterned along the dorsal-ventral axis during the gastrula stage by opposing gradients of Bmps and Bmp inhibitory proteins. Three transcriptional repressors with partially overlapping expression domains have been proposed to be important mediators of Bmp function in Xenopus. We find that two related factors are expressed in the early zebrafish embryo. Although these factors are considerably divergent from the related Xenopus genes, they are expressed in domains similar to those of their Xenopus relatives throughout embryogenesis. Both of the zebrafish genes, which we have named vox and vent, are potent ventralizing factors in both zebrafish and Xenopus embryos. Using mutants in the Bmp pathway, we find that there are Bmp-dependent and Bmp-independent domains of vox expression, whereas vent is mostly dependent upon Bmp signaling. We show that ectopic vox or vent negatively regulates expression of the early dorsal gene bozozok (boz) and that ectopic boz eliminates vox and vent expression. Moreover, the normal exclusion of vox and vent from the organizer region is lost in boz mutant embryos. Our results show that boz and vox/vent are mutually antagonistic and indicate that the early establishment of the size of the organizer domain is dependent on an interplay between these early expressed transcriptional repressors.

PubMed ID: 10926766
Article link: Dev Biol
Grant support: [+]
Genes referenced: ventx2.1

Xenbase: The Xenopus Model Organism Knowledgebase.
Version: 4.15.0
Major funding for Xenbase is provided by grant P41 HD064556