Click here to close Hello! We notice that you are using Internet Explorer, which is not supported by Xenbase and may cause the site to display incorrectly. We suggest using a current version of Chrome, FireFox, or Safari.
Am J Physiol Renal Physiol. July 1, 2000; 279 (1): F161-9.

Characterization of the thiazide-sensitive Na(+)-Cl(-) cotransporter: a new model for ions and diuretics interaction.

Monroy A , Plata C , Hebert SC , Gamba G .

The thiazide-sensitive Na(+)-Cl(-) cotransporter (TSC) is the major pathway for salt reabsorption in the apical membrane of the mammalian distal convoluted tubule. When expressed in Xenopus laevis oocytes, rat TSC exhibits high affinity for both cotransported ions, with the Michaelis-Menten constant (K(m)) for Na(+) of 7.6 +/- 1.6 mM and for Cl(-) of 6.3 +/- 1.1 mM, and Hill coefficients for Na(+) and Cl(-) consistent with electroneutrality. The affinities of both Na(+) and Cl(-) were increased by increasing concentration of the counterion. The IC(50) values for thiazides were affected by both extracellular Na(+) and Cl(-). The higher the Na(+) or Cl(-) concentration, the lower the inhibitory effect of thiazides. Finally, rTSC function is affected by extracellular osmolarity. We propose a transport model featuring a random order of binding in which the binding of each ion facilitates the binding of the counterion. Both ion binding sites alter thiazide-mediated inhibition of transport, indicating that the thiazide-binding site is either shared or modified by both Na(+) and Cl(-).

PubMed ID: 10894798
Article link: Am J Physiol Renal Physiol.
Grant support: DK-38603 NIDDK NIH HHS

Genes referenced: slc12a3 tsc1

External Resources:

Xenbase: The Xenopus laevis and X. tropicalis resource.
Version: 4.9.0
Major funding for Xenbase is provided by the National Institute of Child Health and Human Development, grant P41 HD064556