Click here to close Hello! We notice that you are using Internet Explorer, which is not supported by Xenbase and may cause the site to display incorrectly. We suggest using a current version of Chrome, FireFox, or Safari.
XB-ART-10726
Dev Biol. June 1, 2000; 222 (1): 124-34.

Beta-catenin signaling activity dissected in the early Xenopus embryo: a novel antisense approach.



Abstract
Xenopus embryos develop dorsal/ventral and anterior/posterior axes as a result of the activity of a maternal Xwnt pathway, in which beta-catenin is an essential component, acting as a transactivator of transcription of zygotic genes. However, the questions of where and when beta-catenin is required in early embryogenesis have not been addressed directly, because no loss-of-function method has been available. Here we report the use of a novel antisense approach that allows us to target depletion of protein to individual blastomeres. When a "morpholino" oligo complementary to beta-catenin mRNA is injected into early embryos, it depletes beta-catenin protein effectively through the neurula stage. By targeting the oligo to different cleavage blastomeres, we block beta-catenin activity in different areas and at different times. Dorsal vegetal injection at the 2- and 4-cell stages blocks dorsal axis formation and at the 8-cell stage blocks head formation, while A-tier injection at the 32-cell stage causes abnormal cement gland formation. This approach shows the complex involvement of Xwnt pathways in embryonic patterning and offers a rapid method for the functional analysis of both maternal and early zygotic gene products in Xenopus.

PubMed ID: 10885751
Article link: Dev Biol.
Grant support: R01 HD 33002 NICHD NIH HHS

Genes referenced: ag1 agl cer1 chrd ctnnb1 hhex nodal3.1 nrp1 otx2 sia1 wnt8a
Antibodies referenced:
Article Images: [+] show captions

My Xenbase: [ Log-in / Register ]
version: [3.2.1]


Major funding for Xenbase is provided by the National Institute of Child Health and Human Development, grant P41 HD064556