Click here to close Hello! We notice that you are using Internet Explorer, which is not supported by Xenbase and may cause the site to display incorrectly. We suggest using a current version of Chrome, FireFox, or Safari.
XB-ART-11680
Mol Cell Endocrinol 1999 Dec 20;1581-2:13-23. doi: 10.1016/s0303-7207(99)00189-6.
Show Gene links Show Anatomy links

Protein kinase C activation blocks calcium receptor signaling in Xenopus laevis oocytes.

Chang W , Pratt S , Chen TH , Shoback D .


???displayArticle.abstract???
We examined whether calcium receptor (CaR) signaling is affected by protein kinase C (PKC) activation by assessing the effects of phorbol-12-myristate-13-acetate (PMA) on 45Ca2+ efflux from Xenopus laevis oocytes expressing wild-type (WT) and mutant bovine parathyroid CaRs. Raising extracellular [Ca2+] ([Ca2+]0) from 0.5 to 5.5 mM increased 45Ca efflux (26 +/- 3-fold) in oocytes expressing full-length and C-terminally truncated receptor (amino acid 1-895). These increases in 45Ca efflux were blocked by 88 +/- 3% after PMA treatment for 20 min. Three consensus PKC phosphorylation sites (Thr-647, Ser-795, and Thr-889) were mutated in the context of the full-length and truncated CaR. PMA treatment inhibited high [Ca2+]0-induced responses in oocytes expressing the Ser795Ala CaR (1-895), Thr889Ala CaR (1-895), and Ser795Ala/Thr889Ala CaR (1-895) by 30-40% compared with untreated controls (P < 0.05). A triple mutant of the full-length CaR demonstrated similarly reduced susceptibility to inhibition of 45Ca efflux by PMA. Thus, these sites are important in mediating the effects of PKC activation on CaRs, but other residues and effector molecules are likely to participate in the effects of PKC on CaR-induced signal transduction in target cells.

???displayArticle.pubmedLink??? 10630401
???displayArticle.link??? Mol Cell Endocrinol
???displayArticle.grants??? [+]

Species referenced: Xenopus laevis
Genes referenced: cars1