Click here to close Hello! We notice that you are using Internet Explorer, which is not supported by Xenbase and may cause the site to display incorrectly. We suggest using a current version of Chrome, FireFox, or Safari.
J Cell Biol. October 24, 2005; 171 (2): 217-27.

Analysis of the Xenopus Werner syndrome protein in DNA double-strand break repair.

Yan H , McCane J , Toczylowski T , Chen C .

Werner syndrome is associated with premature aging and increased risk of cancer. Werner syndrome protein (WRN) is a RecQ-type DNA helicase, which seems to participate in DNA replication, double-strand break (DSB) repair, and telomere maintenance; however, its exact function remains elusive. Using Xenopus egg extracts as the model system, we found that Xenopus WRN (xWRN) is recruited to discrete foci upon induction of DSBs. Depletion of xWRN has no significant effect on nonhomologous end-joining of DSB ends, but it causes a significant reduction in the homology-dependent single-strand annealing DSB repair pathway. These results provide the first direct biochemical evidence that links WRN to a specific DSB repair pathway. The assay for single-strand annealing that was developed in this study also provides a powerful biochemical system for mechanistic analysis of homology-dependent DSB repair.

PubMed ID: 16247024
PMC ID: PMC2171202
Article link: J Cell Biol.
Grant support: R01 GM57962-02 NIGMS NIH HHS , R01 GM057962 NIGMS NIH HHS

Genes referenced: neb rad51 rpa1 tbx2 wrn zfp36

External Resources:
Article Images: [+] show captions

Baumann, 1998, Pubmed[+]

Xenbase: The Xenopus laevis and X. tropicalis resource.
Version: 4.9.0
Major funding for Xenbase is provided by the National Institute of Child Health and Human Development, grant P41 HD064556