Click here to close Hello! We notice that you are using Internet Explorer, which is not supported by Xenbase and may cause the site to display incorrectly. We suggest using a current version of Chrome, FireFox, or Safari.
XB-ART-12014
Curr Biol 1999 Nov 04;921:1243-6. doi: 10.1016/s0960-9822(99)80504-1.
Show Gene links Show Anatomy links

ETR-1, a homologue of a protein linked to myotonic dystrophy, is essential for muscle development in Caenorhabditis elegans.

Milne CA , Hodgkin J .


???displayArticle.abstract???
Post-transcriptional gene processing by RNA-binding proteins (RBPs) has crucial roles during development [1] [2]. Here, we report the identification of ETR-1 (ELAV-type RNA-binding protein), a muscle-specific RBP in the nematode Caenorhabditis elegans. ETR-1 is related to the family of RBPs defined by the protein ELAV, which is essential for neurogenesis in the fruit fly Drosophila; members of the family possess two consecutive RNA recognition motifs (RRMs) separated from a third, carboxy-terminal RRM by a tether region of variable length [3] [4] [5] [6]. Its closest homologue, CUG-binding protein (CUG-bp), is a human RBP that has been implicated in the disease myotonic dystrophy and binds CUG repeats in the 3' untranslated region (UTR) of the mRNA for myotonic dystrophy protein kinase (DMPK) [7] [8]. Inactivation of etr-1 by RNA-mediated interference resulted in embryonic lethality. Embryos failed to elongate and became paralysed, a phenotype characteristic of C. elegans Pat mutants, which are defective in muscle formation and function [9]. The data indicate that etr-1 is essential for muscle development in C. elegans, perhaps by playing a role in post-transcriptional processing of some muscle component, and thus suggesting a possible conservation of gene function with human CUG-bp.

???displayArticle.pubmedLink??? 10556089
???displayArticle.link??? Curr Biol


Species referenced: Xenopus
Genes referenced: celf3