Click here to close Hello! We notice that you are using Internet Explorer, which is not supported by Xenbase and may cause the site to display incorrectly. We suggest using a current version of Chrome, FireFox, or Safari.
XB-ART-12338
Mutat Res 1999 Jul 30;4343:243-51. doi: 10.1016/s0921-8777(99)00032-4.
Show Gene links Show Anatomy links

Apoptosis: checkpoint at the mitochondrial frontier.

Bossy-Wetzel E , Green DR .


???displayArticle.abstract???
Apoptosis, an evolutionarily conserved form of cell death, requires a regulated program. Central to the apoptotic program is a family of cysteine proteases, known as caspases, that cleave a subset of cellular proteins, resulting in the stereotypic morphological changes of apoptotic cell death. In living cells caspases are present as inactive zymogens and become activated in response to pro-apoptotic stimuli. Mitochondria participate in the activation of caspases by releasing cytochrome c into the cytosol where it binds to the adaptor molecule Apaf-1 (apoptotic protease activating factor 1) and causes its oligomerization. This renders Apaf-1 competent to recruit and activate the cell death initiator caspase, pro-caspase-9. Once caspase-9 is activated, it cleaves and activates downstream cell death effector caspases. Bcl-2, an apoptosis inhibitor localized to mitochondrial outer membranes, prevents cytochrome c release, caspase activation and cell death. This review discusses recent advances on the role of mitochondria and cytochrome c in the central pathway leading to apoptotic cell death.

???displayArticle.pubmedLink??? 10486595
???displayArticle.link??? Mutat Res