Click here to close Hello! We notice that you are using Internet Explorer, which is not supported by Xenbase and may cause the site to display incorrectly. We suggest using a current version of Chrome, FireFox, or Safari.
XB-ART-12348
Am J Physiol 1999 Sep 01;2773:H1081-8. doi: 10.1152/ajpheart.1999.277.3.H1081.
Show Gene links Show Anatomy links

Inactivation gating determines nicotine blockade of human HERG channels.

Wang HZ , Shi H , Liao SJ , Wang Z .


???displayArticle.abstract???
We have previously found that nicotine blocked multiple K+ currents, including the rapid component of delayed rectifier K+ currents (IKr), by interacting directly with the channels. To shed some light on the mechanisms of interaction between nicotine and channels, we performed detailed analysis on the human ether-à-go-go-related gene (HERG) channels, which are believed to be equivalent to the native I(Kr) when expressed in Xenopus oocytes. Nicotine suppressed the HERG channels in a concentration-dependent manner with greater potency with voltage protocols, which favor channel inactivation. Nicotine caused dramatic shifts of the voltage-dependent inactivation curve to more negative potentials and accelerated the inactivation process. Conversely, maneuvers that weakened the channel inactivation gating considerably relieved the blockade. Elevating the extracellular K+ concentration from 5 to 20 mM increased the nicotine concentration (by approximately 100-fold) needed to achieve the same degree of inhibition. Moreover, nicotine lost its ability to block the HERG channels when a single mutation was introduced to a residue located after transmembrane domain 6 (S631A) to remove the rapid channel inactivation. Our data suggest that the inactivation gating determines nicotine blockade of the HERG channels.

???displayArticle.pubmedLink??? 10484431
???displayArticle.link??? Am J Physiol


Species referenced: Xenopus laevis
Genes referenced: kcnh2