Click here to close Hello! We notice that you are using Internet Explorer, which is not supported by Xenbase and may cause the site to display incorrectly. We suggest using a current version of Chrome, FireFox, or Safari.
Biophys J. July 1, 1999; 77 (1): 248-57.

Heteromeric assembly of Kv2.1 with Kv9.3: effect on the state dependence of inactivation.

Kerschensteiner D , Stocker M .

Modulatory alpha-subunits of Kv channels remain electrically silent after homomeric expression. Their interactions with Kv2 alpha-subunits via the amino-terminal domain promote the assembly of heteromeric functional channels. The kinetic features of these heteromers differ from those of Kv2 homomers, suggesting a distinct role in electrical signaling. This study investigates biophysical properties of channels emerging from the coexpression of Kv2.1 with the modulatory alpha-subunit Kv9.3. Changes relative to homomeric Kv2.1 concern activation, deactivation, inactivation, and recovery from inactivation. A detailed description of Kv2.1/Kv9.3 inactivation is presented. Kv2.1/Kv9.3 heteromers inactivate in a fast and complete fashion from intermediate closed states, but in a slow and incomplete manner from open states. Intermediate closed states of channel gating can be approached through partial activation or deactivation, according to a proposed qualitative model. These transitions are rate-limiting for Kv2.1/Kv9.3 inactivation. Finally, based on the kinetic description, we propose a putative function for Kv2.1/Kv9.3 heteromers in rat heart.

PubMed ID: 10388754
PMC ID: PMC1300326
Article link: Biophys J.

Genes referenced: kcnb1

Aldrich, 1982, Pubmed[+]

My Xenbase: [ Log-in / Register ]
version: [4.5.0]

Major funding for Xenbase is provided by the National Institute of Child Health and Human Development, grant P41 HD064556