Click here to close Hello! We notice that you are using Internet Explorer, which is not supported by Xenbase and may cause the site to display incorrectly. We suggest using a current version of Chrome, FireFox, or Safari.
XB-ART-12987
J Biol Chem May 28, 1999; 274 (22): 15820-7.

Efficiency of importin alpha/beta-mediated nuclear localization sequence recognition and nuclear import. Differential role of NTF2.

Hu W , Jans DA .


Abstract
Little quantitative, kinetic information is available with respect to the process of nuclear import of conventional nuclear localization sequence (NLS)-containing proteins, which initially involves recognition and docking at the nuclear pore by importin alpha/beta. This study compares the binding and nuclear import properties of mouse (m) and yeast (y) importin (IMP) subunits with respect to the NLSs from the SV40 large tumor antigen (T-ag), and the Xenopus laevis phosphoprotein N1N2. m- and y-IMPalpha recognized both NLSs, with y-IMPalpha exhibiting higher affinity. m-IMPbeta greatly enhanced the binding of m-IMPalpha to the T-ag and N1N2 NLSs, but y-IMPbeta did not significantly affect the affinity of y-IMPalpha for the T-ag NLS. In contrast, y-IMPbeta enhanced y-IMPalpha binding to the NLS of N1N2, but to a lesser extent than the enhancement of m-IMPalpha binding by m-IMPbeta. NLS-dependent nuclear import was reconstituted in vitro using the different importin subunits together with the transport factors Ran and NTF2. Whereas T-ag NLS-mediated nuclear import did not exhibit an absolute requirement for NTF2, N1N2 NLS-mediated transport strictly required NTF2. High levels of NTF2 inhibited nuclear accumulation conferred by both NLSs. We conclude that different NLSs possess distinct nuclear import properties due to differences in recognition by importin and requirements for NTF2.

PubMed ID: 10336485
Article link: J Biol Chem


Species referenced: Xenopus
Genes referenced: ag1 brap igf2bp3 impdh1 nutf2 ran