Click here to close Hello! We notice that you are using Internet Explorer, which is not supported by Xenbase and may cause the site to display incorrectly. We suggest using a current version of Chrome, FireFox, or Safari.
XB-ART-14289
Development October 1, 1998; 125 (20): 3997-4006.

Bix1, a direct target of Xenopus T-box genes, causes formation of ventral mesoderm and endoderm.

Tada M , Casey ES , Fairclough L , Smith JC .


Abstract
Brachyury, a member of the T-box gene family, is required for posterior mesoderm and notochord differentiation in vertebrate development, and mis-expression of Xenopus Brachyury causes ectopic mesoderm formation. Brachyury is a transcription activator, and its ability to activate transcription is essential for its biological function, but Brachyury target genes have proved difficult to identify. Here we employ a hormone-inducible Brachyury construct and subtractive hybridization to search for such targets. Using this approach we have isolated Bix1, a homeobox gene expressed both in the marginal zone of Xenopus and in the vegetal hemisphere. Expression of Bix1 is induced in an immediate-early fashion by mesoderm-inducing factors such as activin as well as by the products of the T-box genes Xbra and VegT (also known as Antipodean, Brat and Xombi). Activation of Bix1 in response to Xbra is direct in the sense that it does not require protein synthesis, and both Xbra and VegT activate expression of a reporter gene driven by the Bix 5'' regulatory region, which contains an Xbra/VegT binding site. Mis-expression of low levels of Bix1 causes formation of ventral mesoderm, while high levels induce endodermal differentiation. These results suggest that Bix1 acts downstream of both VegT and Xbra to induce formation of mesoderm and endoderm.

PubMed ID: 9735361
Article link: Development

Genes referenced: bix1.1 bix1.2 bix1.3 tbxt vegt



Xenbase: The Xenopus Model Organism Knowledgebase.
Version: 4.15.0
Major funding for Xenbase is provided by grant P41 HD064556