Click here to close Hello! We notice that you are using Internet Explorer, which is not supported by Xenbase and may cause the site to display incorrectly. We suggest using a current version of Chrome, FireFox, or Safari.
XB-ART-14968
Curr Biol 1998 May 07;810:607-10. doi: 10.1016/s0960-9822(98)70233-7.
Show Gene links Show Anatomy links

The helC gene encodes a putative DEAD-box RNA helicase required for development in Dictyostelium discoideum.

Machesky LM , Insall RH , Kay RR .


???displayArticle.abstract???
DEAD-box RNA helicases, defined by the sequence Asp-Glu-Ala-Asp (DEAD, in single-letter amino-acid code), regulate RNA unwinding and secondary structure in an ATP-dependent manner in vitro [1] and control mRNA stability and protein translation. Both yeast and mammals have large families of DEAD-box proteins, many of unknown function. We have disrupted a Dictyostelium discoideum gene, helC, which encodes helicase C, a member of the DEAD-box family of RNA helicases that shows strong homology to the product of the essential Saccharomyces cerevisiae gene dbp5 [2] and to related helicases in mouse and Schizosaccharomyces pombe. The HelC protein also shows weaker homology to the translation initiation factor elF-4a. Other DEAD-box-containing proteins, which are less closely related to HelC, have been implicated in developmental roles in Drosophila [3] and Xenopus laevis; one example is the Xenopus Vasa-like protein (XVLP) [4-6]. In Drosophila and Xenopus, Vasa and XVLP, respectively, are required for the establishment of tissue polarity during development. In yeast, DEAD-box helicases such as Prp8 [7] are components of the spliceosome and connect pre-mRNA splicing with the cell cycle. Disruption of the helC gene in D. discoideum led to developmental asynchrony, failure to differentiate and aberrant morphogenesis. We postulate that one reason for the existence of large families of homologous DEAD-box proteins in yeast, mammals and Dictyostelium could be that some DEAD-box proteins have developmentally specific roles regulating protein translation or mRNA stability.

???displayArticle.pubmedLink??? 9601648
???displayArticle.link??? Curr Biol


Species referenced: Xenopus laevis
Genes referenced: ddx4 prpf8