Click here to close Hello! We notice that you are using Internet Explorer, which is not supported by Xenbase and may cause the site to display incorrectly. We suggest using a current version of Chrome, FireFox, or Safari.
XB-ART-15143
J Cell Sci 1998 Feb 01;111 ( Pt 3):385-93. doi: 10.1242/jcs.111.3.385.
Show Gene links Show Anatomy links

A propagated wave of MPF activation accompanies surface contraction waves at first mitosis in Xenopus.

Pérez-Mongiovi D , Chang P , Houliston E .


???displayArticle.abstract???
During the period of mitosis, two surface contraction waves (SCWs) progress from the animal to vegetal poles of the Xenopus egg. It has been shown that these SCWs occur in parallel with the activation of MPF and with its subsequent inactivation in the animal and vegetal hemispheres, suggesting that they are responses to propagated waves of MPF activity across the egg. We have analysed the mechanism of MPF regulation in different regions of the egg in detail in relation to SCW progression. The distributions of histone HI kinase activity and of Cdc2 and cyclin B (the catalytic and regulatory subunits of MPF) were followed by dissection of intact eggs following freezing and in cultured fragments separated by ligation. Cdc2 was found to be distributed evenly throughout the egg cytoplasm. Loss of phosphorylated (inactive) forms of Cdc2 coincided spatially with the wave of MPF activation, while cyclin B2 accumulation occurred in parallel in animal and vegetal regions. In ligated vegetal pole fragments no MPF activation or Cdc2 dephosphorylation were detectable. A wave of cyclin B destruction that occurred in concert with the second SCW was also blocked. Taken together these results indicate that the triggering mechanism for MPF activation requires components specific to the animal cytoplasm, acting via Cdc2 dephosphorylation, and that MPF activation subsequently propagates autocatalytically across the egg. SCW progression in the vegetal hemisphere was followed directly by time-lapse videomicroscopy of subcortical mitochondrial islands. The first SCW traversed the vegetal pole at the time of MPF activation in this region. Like MPF activation and inactivation, SCWs were blocked in the vegetal region by ligation. These observations reinforce the hypothesis that the first SCW is a direct consequence of the MPF activation wave. It may reflect depolymerisation of the subcortical microtubule network since it coincided exactly with the arrest of the microtubule-dependent movement of 'cortical rotation' and was related in direction in most eggs. The cyclin B destruction wave and associated cortical contraction of the second SCW may be localised downstream consequences of the MPF activation wave, or they may propagate independently from the animal cytoplasm.

???displayArticle.pubmedLink??? 9427686
???displayArticle.link??? J Cell Sci


Species referenced: Xenopus laevis
Genes referenced: cdk1