Click here to close Hello! We notice that you are using Internet Explorer, which is not supported by Xenbase and may cause the site to display incorrectly. We suggest using a current version of Chrome, FireFox, or Safari.
XB-ART-1558
Nucleic Acids Res January 1, 2005; 33 (13): 4357-67.

An Oct-1 binding site mediates activation of the gata2 promoter by BMP signaling.

Oren T , Torregroza I , Evans T .


Abstract
The gata2 gene encodes a transcription factor implicated in regulating early patterning of ectoderm and mesoderm, and later in numerous cell-specific gene expression programs. Activation of the gata2 gene during embryogenesis is dependent on the bone morphogenetic protein (BMP) signaling pathway, but the mechanism for how signaling controls gene activity has not been defined. We developed an assay in Xenopus embryos to analyze regulatory sequences of the zebrafish gata2 promoter that are necessary to mediate the response to BMP signaling during embryogenesis. We show that activation is Smad dependent, since it is blocked by expression of the inhibitory Smad6. Deletion analysis identified an octamer binding site that is necessary for BMP-mediated induction, and that interacts with the POU homeodomain protein Oct-1. However, this element is not sufficient to transfer a BMP response to a heterologous promoter, requiring an additional more proximal cooperating element. Based on recent studies with other BMP-dependent promoters (Drosophila vestigial and Xenopus Xvent-2), our studies of the gata2 gene suggest that POU-domain proteins comprise a common component of the BMP signaling pathway, cooperating with Smad proteins and other transcriptional activators.

PubMed ID: 16061939
PMC ID: PMC1182169
Article link: Nucleic Acids Res
Grant support: [+]
Genes referenced: babam2 bmp4 gata2 gnl3 pou2f1 smad1 smad6 smad9 ventx2.2


Article Images: [+] show captions
References:
Bertwistle, 1997, Pubmed, Xenbase [+]


Xenbase: The Xenopus laevis and X. tropicalis resource.
Version: 4.11.2


Major funding for Xenbase is provided by grant P41 HD064556