Click here to close Hello! We notice that you are using Internet Explorer, which is not supported by Xenbase and may cause the site to display incorrectly. We suggest using a current version of Chrome, FireFox, or Safari.
Am J Physiol January 1, 1997; 273 (5): F843-8.

A functional CFTR-NBF1 is required for ROMK2-CFTR interaction.

McNicholas CM , Nason MW , Guggino WB , Schwiebert EM , Hebert SC , Giebisch G , Egan ME .

In a previous study on inside-out patches of Xenopus oocytes, we demonstrated that the cystic fibrosis transmembrane conductance regulator (CFTR) enhances the glibenclamide sensitivity of a coexpressed inwardly rectifying K+ channel, ROMK2 (C. M. McNicholas, W. B. Guggino, E. M. Schwiebert, S. C. Hebert, G. Giebisch, and M. E. Egan. Proc. Natl. Acad. Sci. USA 93: 8083-8088, 1996). In the present study, we used the two-microelectrode voltage-clamp technique to measure whole cell K+ currents in Xenopus oocytes, and we further characterized the enhanced sensitivity of ROMK2 to glibenclamide by CFTR. Glibenclamide inhibited K+ currents by 56% in oocytes expressing both ROMK2 and CFTR but only 11% in oocytes expressing ROMK2 alone. To examine the role of the first nucleotide binding fold (NBF1) of CFTR in the ROMK2-CFTR interaction, we studied the glibenclamide sensitivity of ROMK2 when coexpressed with CFTR constructs containing mutations in or around the NBF1 domain. In oocytes coinjected with ROMK2 and a truncated construct of CFTR with an intact NBF1 (CFTR-K593X), glibenclamide inhibited K+ currents by 46%. However, in oocytes coinjected with ROMK2 and a CFTR mutant truncated immediately before NBF1 (CFTR-K370X), glibenclamide inhibited K+ currents by 12%. Also, oocytes expressing both ROMK2 and CFTR mutants with naturally occurring NBF1 point mutations, CFTR-G551D or CFTR-A455E, display glibenclamide-inhibitable K+ currents of only 14 and 25%, respectively. Because CFTR mutations that alter the NBF1 domain reduce the glibenclamide sensitivity of the coexpressed ROMK2 channel, we conclude that the NBF1 motif is necessary for the CFTR-ROMK2 interaction that confers sulfonylurea sensitivity.

PubMed ID: 9374850
Article link: Am J Physiol
Grant support: [+]
Genes referenced: cftr

Xenbase: The Xenopus Model Organism Knowledgebase.
Version: 4.14.0
Major funding for Xenbase is provided by grant P41 HD064556