Click here to close Hello! We notice that you are using Internet Explorer, which is not supported by Xenbase and may cause the site to display incorrectly. We suggest using a current version of Chrome, FireFox, or Safari.
XB-ART-16699
Development April 1, 1997; 124 (8): 1543-51.

Activation of dorsal development by contact between the cortical dorsal determinant and the equatorial core cytoplasm in eggs of Xenopus laevis.

Kageura H .


Abstract
In eggs of Xenopus laevis, dorsal development is activated on the future dorsal side by cortical rotation, after fertilization. The immediate effect of cortical rotation is probably the transport of a dorsal determinant from the vegetal pole to the equatorial region on the future dorsal side. However, the identity and action of the dorsal determinant remain problematic. In the present experiments, individual isolated cortices from various regions of the unfertilized eggs and embryos were implanted into one of several positions of a recipient 8-cell embryo. The incidence of secondary axes was used not only to locate the cortical dorsal determinant at different times but also to locate the region of the core competent to respond to the dorsal determinant. The dorsal axis-inducing activity of the cortex occurred around the vegetal pole of the unfertilized egg. During cortical rotation, it shifted from there to a wide dorsal region. This is apparently the first evidence for the presence of a dorsal determinant in the egg cortex. The competence of the core of the 8-cell embryo was distributed in the form of gradient with the highest responsiveness at the equator. These results suggest that, in the normal embryo, dorsal development is activated by contact between the cortical dorsal determinant and the equatorial core cytoplasm, brought together through cortical rotation.

PubMed ID: 9108370
Article link: Development



Article Images: [+] show captions

Xenbase: The Xenopus Model Organism Knowledgebase.
Version: 4.14.0
Major funding for Xenbase is provided by grant P41 HD064556