Click here to close Hello! We notice that you are using Internet Explorer, which is not supported by Xenbase and may cause the site to display incorrectly. We suggest using a current version of Chrome, FireFox, or Safari.
XB-ART-1705
Biochem Biophys Res Commun 2005 Aug 12;3334:1194-201. doi: 10.1016/j.bbrc.2005.06.026.
Show Gene links Show Anatomy links

Evidence that the tertiary structure of 20(S)-ginsenoside Rg(3) with tight hydrophobic packing near the chiral center is important for Na(+) channel regulation.

Kang DI , Lee JY , Yang JY , Jeong SM , Lee JH , Nah SY , Kim Y .


???displayArticle.abstract???
Ginsenosides are the active ingredients of Panax ginseng. Ginsenoside Rg(3) exists as two stereoisomers of carbon-20: 20-S-protopanaxatriol-3-[O-beta-d-glucopyranosyl (1-->2)-beta-glucopyranoside] (20(S)-Rg(3)) and 20-R-protopanaxatriol-3-[O-beta-d-glucopyranosyl (1-->2)-beta-glucopyranoside] (20(R)-Rg(3)). Recently, we reported that 20(S)-Rg(3) regulates voltage-dependent Ca(2+) channel activity and several types of ligand-gated ion channels, whereas 20(R)-Rg(3) does not have this activity. In this study, we investigated the structure-activity relationship of these two stereoisomers by NMR spectroscopy and by measurement of the current in Xenopus oocytes expressing the mouse cardiac voltage-dependent Na(+) channel (Na(v)1.5). We found that 20(S)-Rg(3) but not 20(R)-Rg(3) inhibited Na(+) channel current in a dose- and voltage-dependent manner. The difference between Rg(3) epimers in voltage-dependent ion channel regulation indicates that the structure of 20(S)-Rg(3) may be geometrically better aligned than that of 20(R)-Rg(3) for interaction with receptor regions in Na(+) channels. The (1)H and (13)C NMR chemical shifts, including all hydroxyl protons of 20(S)-Rg(3) and 20(R)-Rg(3), were completely assigned, and their tertiary structures were determined. 20(S)-Rg(3) has more tight hydrophobic packing near the chiral center than 20(R)-Rg(3). Tertiary structures and activities of 20(S)-Rg(3) and 20(R)-Rg(3) indicate that 20(S)-Rg(3) may have stronger interactions with the receptor region in ion channels than 20(R)-Rg(3). This may result in different stereoselectivity of Rg(3) stereoisomers in the regulation of voltage-dependent Na(+) channel activity. This is the first structural approach to ginsenoside action on ion channel.

???displayArticle.pubmedLink??? 15979567
???displayArticle.link??? Biochem Biophys Res Commun