Click here to close Hello! We notice that you are using Internet Explorer, which is not supported by Xenbase and may cause the site to display incorrectly. We suggest using a current version of Chrome, FireFox, or Safari.
XB-ART-17457
Pflugers Arch 1996 Jan 01;4331-2:77-83. doi: 10.1007/s004240050251.
Show Gene links Show Anatomy links

Heterooligomeric assembly of inward-rectifier K+ channels from subunits of different subfamilies: Kir2.1 (IRK1) and Kir4.1 (BIR10).

Fakler B , Bond CT , Adelman JP , Ruppersberg JP .


???displayArticle.abstract???
Activities of strong inward-rectifier K+ channels composed of Kir2. 1(84 M), Kir2.1(84T) and Kir4.1 subunits and weak inward-rectifier K+ channels composed of Kir4.1(E158N) subunits were measured from giant inside-out patches of Xenopus laevis oocytes. The conductance/voltage (g/V) relationship for block by intracellular spermine (SPM) was biphasic for both Kir2.1 channel types while it was monophasic for both Kir4.1 channel types. The release of blocking Mg2+ ions was slow for Kir2.1(84T) but virtually instantaneous for Kir2.1(84M) and both Kir4.1 channel types. Coexpression of Kir2.1(84T) and Kir4.1(E158N) resulted in heterooligomeric channels which were strongly rectifying, with a g/V relationship for SPM-evoked block that was significantly different from that of either parental homooligomeric channel type. Block by intracellular Mg2+ was markedly stronger than that for Kir4.1(E158N) channels, while release of the block was almost instantaneous, similar to that for Kir4.1(E158N) channels. This suggests preferential formation of a particular heterooligomer such as was recently proposed for subunits within the Kir3.0 family.

???displayArticle.pubmedLink??? 9019734
???displayArticle.link??? Pflugers Arch


Species referenced: Xenopus laevis
Genes referenced: kcnj10 kcnj12 kcnj2