Click here to close Hello! We notice that you are using Internet Explorer, which is not supported by Xenbase and may cause the site to display incorrectly. We suggest using a current version of Chrome, FireFox, or Safari.
XB-ART-1850
J Exp Biol 2005 Jun 01;208Pt 11:2063-70. doi: 10.1242/jeb.01595.
Show Gene links Show Anatomy links

Glutamate transporter type 3 attenuates the activation of N-methyl-D-aspartate receptors co-expressed in Xenopus oocytes.

Zuo Z , Fang H .


???displayArticle.abstract???
We studied the regulation of N-methy-D-aspartate receptor (NMDAR) current/activation by glutamate transporter type 3 (EAAT3), a neuronal EAAT in vivo, in the restricted extracellular space of a biological model. This model involved co-expressing EAAT3 and NMDAR (composed of NMDAR1-1a and NMDAR2A) in Xenopus oocytes. The NMDAR current was reduced in the co-expression oocytes but not in oocytes expressing NMDAR only when the flow of glutamate-containing superfusate was stopped. The degree of this current reduction was glutamate concentration-dependent. No reduction of NMDAR current was observed in Na+-free solution or when NMDA, a non-substrate for EAATs, was used as the agonist for NMDAR. In the continuous flow experiments, the dose-response curve of glutamate-induced current was shifted to the right-hand side in co-expression oocytes compared with oocytes expressing NMDAR alone. The degree of this shift depended on the abundance of EAAT3 in the co-expression oocytes. Thus, the glutamate concentrations sensed by NMDAR locally were lower than those in the superfusates. These results suggest that EAAT3 regulates the amplitude of NMDAR currents at pre-saturated concentrations of glutamate to EAAT3. Thus, EAATs, by rapidly regulating glutamate concentrations near NMDAR, modulate NMDAR current/activation.

???displayArticle.pubmedLink??? 15914650
???displayArticle.link??? J Exp Biol
???displayArticle.grants??? [+]

Species referenced: Xenopus laevis
Genes referenced: grin1 slc1a1