Click here to close Hello! We notice that you are using Internet Explorer, which is not supported by Xenbase and may cause the site to display incorrectly. We suggest using a current version of Chrome, FireFox, or Safari.
XB-ART-1877
J Biol Chem July 22, 2005; 280 (29): 27165-72.

Tissue- and gene-specific recruitment of steroid receptor coactivator-3 by thyroid hormone receptor during development.

Paul BD , Buchholz DR , Fu L , Shi YB .


Abstract
Numerous coactivators that bind nuclear hormone receptors have been isolated and characterized in vitro. Relatively few studies have addressed the developmental roles of these cofactors in vivo. By using the total dependence of amphibian metamorphosis on thyroid hormone (T3) as a model, we have investigated the role of steroid receptor coactivator 3 (SRC3) in gene activation by thyroid hormone receptor (TR) in vivo. First, expression analysis showed that SRC3 was expressed in all tadpole organs analyzed. In addition, during natural as well as T3-induced metamorphosis, SRC3 was up-regulated in both the tail and intestine, two organs that undergo extensive transformations during metamorphosis and the focus of the current study. We then performed chromatin immunoprecipitation assays to investigate whether SRC3 is recruited to endogenous T3 target genes in vivo in developing tadpoles. Surprisingly, we found that SRC3 was recruited in a gene- and tissue-dependent manner to target genes by TR, both upon T3 treatment of premetamorphic tadpoles and during natural metamorphosis. In particular, in the tail, SRC3 was not recruited in a T3-dependent manner to the target TRbetaA promoter, suggesting either no recruitment or constitutive association. Finally, by using transgenic tadpoles expressing a dominant negative SRC3 (F-dnSRC3), we demonstrated that F-dnSRC3 was recruited in a T3-dependent manner in both the intestine and tail, blocking the recruitment of endogenous coactivators and histone acetylation. These results suggest that SRC3 is utilized in a gene- and tissue-specific manner by TR during development.

PubMed ID: 15901728
Article link: J Biol Chem

Genes referenced: ncoa3 thra



Xenbase: The Xenopus laevis and X. tropicalis resource.
Version: 4.13.1
Major funding for Xenbase is provided by grant P41 HD064556