Click here to close Hello! We notice that you are using Internet Explorer, which is not supported by Xenbase and may cause the site to display incorrectly. We suggest using a current version of Chrome, FireFox, or Safari.
XB-ART-19634
Mol Cell Biol 1995 Jun 01;156:3390-7. doi: 10.1128/MCB.15.6.3390.
Show Gene links Show Anatomy links

14-3-3 is not essential for Raf-1 function: identification of Raf-1 proteins that are biologically activated in a 14-3-3- and Ras-independent manner.

Michaud NR , Fabian JR , Mathes KD , Morrison DK .


???displayArticle.abstract???
Recent reports have demonstrated the in vivo association of Raf-1 with members of the 14-3-3 protein family. To address the significance of the Raf-1-14-3-3 interaction, we investigated the enzymatic activity and biological function of Raf-1 in the presence and absence of associated 14-3-3. The interaction between these two molecules was disrupted in vivo and in vitro with a combination of molecular and biochemical techniques. Biochemical studies demonstrated that the enzymatic activities of Raf-1 were equivalent in the presence and absence of 14-3-3. Furthermore, mixing of purified Raf-1 and 14-3-3 in vitro was not sufficient to activate Raf-1. With a molecular approach, Cys-165 and Cys-168 as well as Ser-259 were identified as residues of Raf-1 required for the interaction with 14-3-3. Cys-165 and Cys-168 are located within the conserved cysteine-rich region of the CR1 domain, and Ser-259 is a conserved site of serine phosphorylation found within the CR2 domain. Mutation of either Cys-165 and Cys-168 or Ser-259 prevented the stable interaction of Raf-1 with 14-3-3 in vivo. Consistent with the model in which a site of serine phosphorylation is involved in the Raf-1-14-3-3 interaction, dephosphorylated Raf-1 was unable to associate with 14-3-3 in vitro. Phosphorylation may represent a general mechanism mediating 14-3-3 binding, because dephosphorylation of the Bcr kinase (known to interact with 14-3-3) also eliminated its association with 14-3-3. Finally, mutant Raf-1 proteins unable to stably interact with 14-3-3 exhibited enhanced enzymatic activity in human 293 cells and Xenopus oocytes and were biologically activated, as demonstrated by their ability to induced meiotic maturation of Xenopus oocytes. However, in contrast to wild-type Raf-1, activation of these mutants was independent of Ras. Our results therefore indicate that interaction with 14-3-3 is not essential for Raf-1 function.

???displayArticle.pubmedLink??? 7760835
???displayArticle.pmcLink??? PMC230573
???displayArticle.link??? Mol Cell Biol
???displayArticle.grants??? [+]

Species referenced: Xenopus
Genes referenced: bcr cripto.3 raf1 tdgf1.2

References [+] :
Aitken, 14-3-3 proteins: a highly conserved, widespread family of eukaryotic proteins. 1992, Pubmed