Click here to close Hello! We notice that you are using Internet Explorer, which is not supported by Xenbase and may cause the site to display incorrectly. We suggest using a current version of Chrome, FireFox, or Safari.
Neuropharmacology June 1, 1995; 34 (6): 583-90.

Human alpha 7 nicotinic acetylcholine receptor responses to novel ligands.

Briggs CA , McKenna DG , Piattoni-Kaplan M .

Responses of the human alpha 7 nicotinic acetylcholine receptor (nAChR) in Xenopus laevis oocytes were quantified using two-electrode voltage clamp in the presence of barium (10 mM) to block secondary activation of Ca(2+)-dependent chloride currents. The effect of (S)-3-methyl-5-(1-methyl-2-pyrrolidinyl) isoxazole (ABT-418) and (2,4)-dimethoxybenzylidene anabaseine (GTS-21), two potential compounds for the treatment of Alzheimer''s Disease, and of the natural product (+/-)epibatidine were compared to (-)nicotine. (+/-)Epibatidine acted as an agonist and was 64-fold more potent than (-) nicotine (EC50s = 1.30 +/- 0.11 microM and 83 +/- 10 microM, respectively). ABT-418 also was an agonist, 3-fold less potent and 75% as efficacious as (-)nicotine (EC50 = 264 +/- 34 microM). GTS-21, in contrast, inhibited the response to (-)nicotine at concentrations < or = 10 microM and itself elicited only a small response at higher concentrations (12% of the (-)nicotine response at 1 mM). Reversible blockade by methyllycaconitine (10 nM) corroborated the responses as due to activation of alpha 7 nAChR. This represents the first characterization of human alpha 7 nAChR responses to these novel nicotinic agonists.

PubMed ID: 7566493
Article link: Neuropharmacology

Xenbase: The Xenopus Model Organism Knowledgebase.
Version: 4.15.0
Major funding for Xenbase is provided by grant P41 HD064556