Click here to close Hello! We notice that you are using Internet Explorer, which is not supported by Xenbase and may cause the site to display incorrectly. We suggest using a current version of Chrome, FireFox, or Safari.
XB-ART-1979
Development June 1, 2005; 132 (11): 2587-97.

Essential role of non-canonical Wnt signalling in neural crest migration.

De Calisto J , Araya C , Marchant L , Riaz CF , Mayor R .


Abstract
Migration of neural crest cells is an elaborate process that requires the delamination of cells from an epithelium and cell movement into an extracellular matrix. In this work, it is shown for the first time that the non-canonical Wnt signalling [planar cell polarity (PCP) or Wnt-Ca2+] pathway controls migration of neural crest cells. By using specific Dsh mutants, we show that the canonical Wnt signalling pathway is needed for neural crest induction, while the non-canonical Wnt pathway is required for neural crest migration. Grafts of neural crest tissue expressing non-canonical Dsh mutants, as well as neural crest cultured in vitro, indicate that the PCP pathway works in a cell-autonomous manner to control neural crest migration. Expression analysis of non-canonical Wnt ligands and their putative receptors show that Wnt11 is expressed in tissue adjacent to neural crest cells expressing the Wnt receptor Frizzled7 (Fz7). Furthermore, loss- and gain-of-function experiments reveal that Wnt11 plays an essential role in neural crest migration. Inhibition of neural crest migration by blocking Wnt11 activity can be rescued by intracellular activation of the non-canonical Wnt pathway. When Wnt11 is expressed opposite its normal site of expression, neural crest migration is blocked. Finally, time-lapse analysis of cell movement and cell protrusion in neural crest cultured in vitro shows that the PCP or Wnt-Ca2+ pathway directs the formation of lamellipodia and filopodia in the neural crest cells that are required for their delamination and/or migration.

PubMed ID: 15857909
Article link: Development
Grant support: [+]
Genes referenced: actl6a akr1c1 akr1c2 dvl1 dvl2 fn1 fzd7 rdx snai2 wnt11


Article Images: [+] show captions


Xenbase: The Xenopus Model Organism Knowledgebase.
Version: 4.14.0
Major funding for Xenbase is provided by grant P41 HD064556