Click here to close Hello! We notice that you are using Internet Explorer, which is not supported by Xenbase and may cause the site to display incorrectly. We suggest using a current version of Chrome, FireFox, or Safari.
XB-ART-20728
J Cell Sci 1994 Oct 01;107 ( Pt 10):2825-37.
Show Gene links Show Anatomy links

Recruitment of antigenic gamma-tubulin during mitosis in animal cells: presence of gamma-tubulin in the mitotic spindle.

Lajoie-Mazenc I , Tollon Y , Detraves C , Julian M , Moisand A , Gueth-Hallonet C , Debec A , Salles-Passador I , Puget A , Mazarguil H .


???displayArticle.abstract???
It has been claimed repeatedly that gamma-tubulin is exclusively localized at the spindle poles in mitotic animal cells, where it plays a role in microtubule nucleation. In addition to this localization, we have observed a gamma-tubulin-specific staining of the mitotic spindle in several animal cells (human, kangaroo rat, mouse, Chinese hamster, Xenopus and Drosophila) using five polyclonal antibodies raised against unique gamma-tubulin sequences and four different fixation protocols. In HeLa and PtK2 cells, gamma-tubulin was detected in the mitotic spindle from late prometaphase to telophase. In contrast, in other cell types, it was detected in metaphase only. In all cases we failed to detect gamma-tubulin in the short aster microtubules at the spindle poles. Electron microscopic observation revealed that at least part of the gamma-tubulin localized on the surface of spindle microtubules with a preferential distribution along kinetochore microtubules. In HeLa cells, the amount of antigenic gamma-tubulin was fairly constant in the spindle poles during mitosis from prometaphase to telophase. In contrast, gamma-tubulin appeared in the mitotic spindles in prometaphase. The amount of gamma-tubulin decreased in telophase, where it relocalized in the interzone. In metaphase cells about 15-25% of the total fluorescence was localized at the spindle poles, while 75-85% of the fluorescence was distributed over the rest of the spindle. These results suggest that the localization and timing of gamma-tubulin during the cell cycle is highly regulated and that is physiological role could be more complex and diverse than initially assumed.

???displayArticle.pubmedLink??? 7876350
???displayArticle.link??? J Cell Sci


Species referenced: Xenopus
Genes referenced: ptk2 tubg1