Click here to close Hello! We notice that you are using Internet Explorer, which is not supported by Xenbase and may cause the site to display incorrectly. We suggest using a current version of Chrome, FireFox, or Safari.
Biophys J September 1, 1994; 67 (3): 1007-14.

The saxitoxin/tetrodotoxin binding site on cloned rat brain IIa Na channels is in the transmembrane electric field.

Satin J , Limberis JT , Kyle JW , Rogart RB , Fozzard HA .

The rat brain IIa (BrIIa) Na channel alpha-subunit and the brain beta 1 subunit were coexpressed in Xenopus oocytes, and peak whole-oocyte Na current (INa) was measured at a test potential of -10 mV. Hyperpolarization of the holding potential resulted in an increased affinity of STX and TTX rested-state block of BrIIa Na channels. The apparent half-block concentration (ED50) for STX of BrIIa current decreased with hyperpolarizing holding potentials (Vhold). At Vhold of -100 mV, the ED50 was 2.1 +/- 0.4 nM, and the affinity increased to a ED50 of 1.2 +/- 0.2 nM with Vhold of -140 mV. In the absence of toxin, the peak current amplitude was the same for all potentials negative to -90 mV, demonstrating that all of the channels were in a closed conformation and maximally available to open in this range of holding potentials. The Woodhull model (1973) was used to describe the increase of the STX ED50 as a function of holding potential. The equivalent electrical distance of block (delta) by STX was 0.18 from the extracellular milieu when the valence of STX was fixed to +2. Analysis of the holding potential dependence of TTX block yielded a similar delta when the valence of TTX was fixed to +1. We conclude that the guanidinium toxin site is located partially within the transmembrane electric field. Previous site-directed mutagenesis studies demonstrated that an isoform-specific phenylalanine in the BrIIa channel is critical for high affinity toxin block. Therefore, we propose that amino acids at positions corresponding to this Phe in the BrIIa channel, which lie in the outer vestibule of the channel adjacent to the pore entrance,are partially in the transmembrane potential drop.

PubMed ID: 7811911
PMC ID: PMC1225453
Article link: Biophys J
Grant support: [+]

Backx, 1992, Pubmed [+]

Xenbase: The Xenopus laevis and X. tropicalis resource.
Version: 4.11.3

Major funding for Xenbase is provided by grant P41 HD064556