Click here to close Hello! We notice that you are using Internet Explorer, which is not supported by Xenbase and may cause the site to display incorrectly. We suggest using a current version of Chrome, FireFox, or Safari.
XB-ART-22058
Neuropharmacology November 1, 1993; 32 (11): 1103-16.

A beta-subunit normalizes the electrophysiological properties of a cloned N-type Ca2+ channel alpha 1-subunit.

Stea A , Dubel SJ , Pragnell M , Leonard JP , Campbell KP , Snutch TP .


Abstract
The electrophysiological and pharmacological properties of a cloned rat brain N-type Ca2+ channel were determined by transient expression in Xenopus oocytes. Expression of the class B Ca2+ channel alpha 1 subunit, rbB-I, resulted in a high voltage-threshold current that activated slowly and showed little inactivation over 800 msec. Characteristic of N-type currents, the rbB-I current was completely blocked by omega-conotoxin GVIA and was insensitive to nifedipine and Bay K8644. The modulatory effects on the rbB-I current by cloned rat brain Ca2+ channel alpha 2 and beta 1b subunits were also examined. Coexpression of rbB-I with the beta 1b subunit caused significant changes in the properties of the rbB-I current making it more similar to N-type currents in neurons. These included: (1) an increase in the whole-cell current, (2) an increased rate of activation, (3) a shift of the voltage-dependence of inactivation to hyperpolarized potentials and (4) a pronounced inactivation of the current over 800 msec. Coexpression with the rat brain alpha 2 subunit had no significant effect on the rbB-I current alone but appeared to potentiate the rbB-I+beta 1b whole cell current. The results show that coexpression with the brain beta 1b subunit normalizes the rbB-I N-type current, and suggests the possibility that differences in subunit composition may contribute to the heterogeneous properties described for N-type channels in neurons.

PubMed ID: 8107965
Article link:
Grant support: [+]


Xenbase: The Xenopus Model Organism Knowledgebase.
Version: 4.16.0
Major funding for Xenbase is provided by grant P41 HD064556