Click here to close Hello! We notice that you are using Internet Explorer, which is not supported by Xenbase and may cause the site to display incorrectly. We suggest using a current version of Chrome, FireFox, or Safari.
XB-ART-22229
J Neurobiol 1993 Sep 01;249:1215-28. doi: 10.1002/neu.480240908.
Show Gene links Show Anatomy links

Differential sensitivity to androgens within a sexually dimorphic muscle of male frogs (Xenopus laevis).

Regnier M , Herrera AA .


???displayArticle.abstract???
Male frogs use their forelimb flexor muscles to clasp females during the mating behavior known as amplexus. We investigated the effects of testosterone on a principal forelimb flexor, the flexor carpi radialis muscle (FCR), using morphological and histochemical techniques. Male Xenopus laevis were surgically manipulated to produce high or low levels of circulating testosterone for an 8-week period. After this treatment, measurement of fibers in muscle cross-sections revealed that average fiber size was positively correlated with testosterone level. This effect was not the same for all muscle fibers, however. Fibers in the shoulder region were more sensitive to testosterone than fibers in other regions of the muscle. Histochemical staining of cross-sections showed that the patterns of staining for myosin ATPase or succinic dehydrogenase (SDH) were not influenced by testosterone levels, but total SDH activity was increased by testosterone treatment. When sensitivity to testosterone was correlated with ATPase activity, fibers with high ATPase activity were found to be more sensitive to testosterone than fibers with low activity, regardless of position within the muscle. Most fibers with high ATPase activity were located in the shoulder region of the muscle. These fibers are innervated by different motor axons than are fibers in the elbow region of the muscle, and contractions of shoulder (but not elbow) region fibers, elicited by stimulation of motor axons, are slowed by testosterone treatment (Regnier and Herrera, 1993, J. Physiol. 461:565-581).

???displayArticle.pubmedLink??? 8409979
???displayArticle.link??? J Neurobiol