Click here to close Hello! We notice that you are using Internet Explorer, which is not supported by Xenbase and may cause the site to display incorrectly. We suggest using a current version of Chrome, FireFox, or Safari.
Biochem J September 1, 1993; 294 ( Pt 2) 551-6.

Species and tissue distribution of the regulatory protein of glucokinase.

Vandercammen A , Van Schaftingen E .

Rat liver is known to contain a regulatory protein that inhibits glucokinase (hexokinase IV or D) competitively versus glucose. This inhibition is greatly reinforced by the presence of fructose 6-phosphate and antagonized by fructose 1-phosphate and by KCl. This protein was now measured in various rat tissues and in the livers of various species by the inhibition it exerts on rat liver glucokinase. Rat, mouse, rabbit, guinea-pig and pig liver, all of which contain glucokinase, also contained between 60 and 200 units/g of tissue of a regulatory protein displaying the properties mentioned above. By contrast, this protein could not be detected in cat, goat, chicken or trout liver, or in rat brain, heart, skeletal muscle, kidney and spleen, all tissues from which glucokinase is missing. Fructose 1-phosphate stimulated glucokinase in extracts of human liver, indicating the presence of regulatory protein. In addition, antibodies raised against rat regulatory protein allowed the detection of an approximately 60 kDa polypeptide in rat, guinea pig, rabbit and human liver. The livers of the toad Bufo marinus, of Xenopus laevis and of the turtle Pseudemys scripta elegans contained a regulatory protein similar to that of the rat, with, however, the major difference that it was not sensitive to fructose 6-phosphate or fructose 1-phosphate. In rat liver, the regulatory protein was detectable 4 days before birth. Its concentration increased afterwards to reach the adult level at day 30 of extrauterine life, whereas glucokinase only appeared after day 15. In the liver of the adult rat, starvation and streptozotocin-diabetes caused a 50-60% decrease in the concentration of regulatory protein after 7 days, whereas glucokinase activity fell to about 20% of its initial level. When 4-day-starved rats were refed, or when diabetic rats were treated with insulin, the concentration of regulatory protein slowly increased to reach about 85% of the control level after 3 days, whereas the glucokinase activity was normalized after the same delay. The fact that there appears to be no situation in which glucokinase is expressed without regulatory protein is in agreement with the notion that the regulatory protein forms a functional entity with this enzyme.

PubMed ID: 8373368
PMC ID: PMC1134490
Article link: Biochem J

Species referenced: Xenopus laevis
Genes referenced: cat.2 gck ins

References [+] :
Andreone, The amino acid sequence of rat liver glucokinase deduced from cloned cDNA. 1989, Pubmed