Click here to close Hello! We notice that you are using Internet Explorer, which is not supported by Xenbase and may cause the site to display incorrectly. We suggest using a current version of Chrome, FireFox, or Safari.
XB-ART-2259
Toxicol Appl Pharmacol March 15, 2005; 203 (3): 257-63.

Organic anion transporting polypeptides expressed in liver and brain mediate uptake of microcystin.

Fischer WJ , Altheimer S , Cattori V , Meier PJ , Dietrich DR , Hagenbuch B .


Abstract
Microcystins are toxins produced by freshwater cyanobacteria. They are cyclic heptapeptides that exhibit hepato- and neurotoxicity. However, the transport systems that mediate uptake of microcystins into hepatocytes and across the blood-brain barrier have not yet been identified. Using the Xenopus laevis oocyte expression system we tested whether members of the organic anion transporting polypeptide superfamily (rodent: Oatps; human: OATPs) are involved in transport of the most common microcystin variant microcystin-LR by measuring uptake of a radiolabeled derivative dihydromicrocystin-LR. Among the tested Oatps/OATPs, rat Oatp1b2, human OATP1B1, human OATP1B3, and human OATP1A2 transported microcystin-LR 2- to 5-fold above water-injected control oocytes. This microcystin-LR transport was inhibited by co-incubation with the known Oatp/OATP substrates taurocholate (TC) and bromosulfophthalein (BSP). Microcystin-LR transport mediated by the human OATPs was further characterized and showed saturability with increasing microcystin-LR concentrations. The apparent K(m) values amounted to 7 +/- 3 microM for OATP1B1, 9 +/- 3 microM for OATP1B3, and 20 +/- 8 microM for OATP1A2. No microcystin-LR transport was observed in oocytes expressing Oatp1a1, Oatp1a4, and OATP2B1. These results may explain some of the observed organ-specific toxicity of microcystin-LR. Oatp1b2, OATP1B1, and OATP1B3 are responsible for microcystin transport into hepatocytes, whereas OATP1A2 mediates microcystin-LR transport across the blood-brain barrier.

PubMed ID: 15737679
Article link: Toxicol Appl Pharmacol

Genes referenced: ibsp rpsa slco1a2 slco1b3 slco2b1



Xenbase: The Xenopus laevis and X. tropicalis resource.
Version: 4.12.0


Major funding for Xenbase is provided by grant P41 HD064556