Click here to close Hello! We notice that you are using Internet Explorer, which is not supported by Xenbase and may cause the site to display incorrectly. We suggest using a current version of Chrome, FireFox, or Safari.
Chromosoma August 1, 1992; 101 (9): 566-74.

The gene structure of Xenopus nuclear lamin A: a model for the evolution of A-type from B-type lamins by exon shuffling.

Nuclear lamins are intermediate filament (IF) type proteins that form a fibrillar network underlying the inner nuclear membrane. The existence of multiple subtypes of lamins in vertebrates has been interpreted in terms of functional specialization during cell division and differentiation. The structure of a gene encoding an A-type lamin of Xenopus laevis was analysed. Comparison with that of a B-type lamin of the same species shows remarkable conservation of the exon/intron pattern. In both genes the last exon, only 9-12 amino acids in length, encodes the complete information necessary for membrane targeting of lamins, i.e. a ras-related CaaX motif. The lamin A specific extension of the tail domain is encoded by a single additional exon. The 5'' boundary of this exon coincides with the sequence divergence between human lamins A and C, for which an alternative splice mechanism had previously been suggested. Arguments are presented suggesting that B-type lamins represent the ancestral type of lamins and that A-type lamins derived there from by exon shuffling. The acquisition of the new exon might explain the different fates of A- and B-types lamins during cell division.

PubMed ID: 1521501
Article link: Chromosoma

Genes referenced: lmna

References [+] :
Aebi, The nuclear lamina is a meshwork of intermediate-type filaments. 1986, Pubmed, Xenbase

Xenbase: The Xenopus Model Organism Knowledgebase.
Version: 4.15.0
Major funding for Xenbase is provided by grant P41 HD064556