Click here to close Hello! We notice that you are using Internet Explorer, which is not supported by Xenbase and may cause the site to display incorrectly. We suggest using a current version of Chrome, FireFox, or Safari.
XB-ART-23667
Dev Biol June 1, 1992; 151 (2): 516-30.

Microtubule organization during maturation of Xenopus oocytes: assembly and rotation of the meiotic spindles.



Abstract
Assembly of the meiotic spindles during progesterone-induced maturation of Xenopus oocytes was examined by confocal fluorescence microscopy using anti-tubulin antibodies and by time-lapse confocal microscopy of living oocytes microinjected with fluorescent tubulin. Assembly of a transient microtubule array from a disk-shaped MTOC was observed soon after germinal vesicle breakdown. This MTOC-TMA complex rapidly migrated toward the animal pole, in association with the condensing meiotic chromosomes. Four common stages were observed during the assembly of both M1 and M2 spindles: (1) formation of a compact aggregate of microtubules and chromosomes; (2) reorganization of this aggregate resulting in formation of a short bipolar spindle; (3) an anaphase-B-like elongation of the prometaphase spindle, transversely oriented with respect to the oocyte A-V axis; and (4) rotation of the spindle into alignment with the oocyte axis. The rate of spindle elongation observed in M1 (0.7 microns min-1) was slower than that observed in M2 (1.8 microns min-1). Examination of spindles by immunofluorescence with antitubulin revealed numerous interdigitating microtubules, suggesting that prometaphase elongation of meiotic spindles in Xenopus oocytes results from active sliding of antiparallel microtubules. A substantial number of maturing oocytes formed monopolar microtubule asters during M1, nucleated by hollow spherical MTOCs. These monasters were subsequently observed to develop into bipolar M1 spindles and proceed through meiosis. The results presented define a complex pathway for assembly and rotation of the meiotic spindles during maturation of Xenopus oocytes.

PubMed ID: 1601183
Article link: Dev Biol

Genes referenced: tubal3.1
Antibodies: Tuba4a AbX



Xenbase: The Xenopus Model Organism Knowledgebase.
Version: 4.15.0
Major funding for Xenbase is provided by grant P41 HD064556